- Abdollahi, H., J. S. Shataee, A. Sepehri & H. Zanganeh, 2010. Comparing investigation on Landsat-ETM+ and IRS-P6-LISS IV data for canopy cover mapping of Zagros forests (Case study, Javanroud forests), Journal of Wood & Forest Science and Technology, 17(3): 1-18 (In Persian).
- Abedi, R. & A. E. Bonyad, 2015. Estimation and Mapping Forest Attributes Using" k Nearest Neighbor" Method on IRS-P6 LISS III Satellite Image Data, Ecologia Balkanica, 7(1): 93-102.
- Bannari, A., D. Morin, F. Bonn & A. R. Huete, 1995. A review of vegetation indices, Remote Sensing Reviews, 13(1-2): 95-120.
- Breiman, L., 2001. Random forests, Machine learning, 45(1): 5-32.
- Clevers, J. G. P. W., 1989, Application of a weighted infrared-red vegetation index for estimating leaf area index by correcting for soil moisture, Remote Sensing of Environment, 29(1): 25-37.
- Erfanifard, S. Y., M. Zobeyri, J. Feghhi & M. Namiranian, 2007. Estimation of crown cover on aerial photographs using shadow index (case study: Zagros forests, Iran),
Iranian Journal of Forest and Poplar Research, 3(29): 278-288 (In Persian).
- Fawcett, T., 2006. An introduction to ROC analysis, Pattern Recognition Letters, 27(8):861-874.
- Golino, H. F. & C. M. A. Gomes, 2014. Visualizing Random Forest’s prediction results, Psychology, 5(19): 2084.
- Jafari, M., 2007. Environmental image of the protected area of Manesht and Qalarang, Publications of the Environmental Protection Agency of the province Ilam, Ilam.
- Kuhn, M., 2015. A Short Introduction to the caret Package. R Found Stat Comput: 1-10.
- LeMay, V. & H. Temesgen, 2005. Comparison of nearest neighbor methods for estimating basal area and stems per hectare using aerial auxiliary variables, Forest Science, 51(2): 109-119.
- LeMay, V., J. Maedel & N. C. Coops, 2008. Estimating stand structural details using nearest neighbor analyses to link ground data, forest cover maps, and Landsat imagery, Remote Sensing of Environment, 112(5): 2578-2591.
- Li, C., J. Wang, L. Wang, L. Hu & P. Gong, 2014. Comparison of classification algorithms and training sample sizes in urban land classification with Landsat Thematic Mapper Imagery, Remote Sensing, 6(2): 964-983.
- Liaw, A. & M. Wiener, 2002. Classification and regression by random Forest, R news, 2(3): 18-22.
- Lillesand, T., R. W. Kiefer & J. Chipman, 2004. Remote sensing and image interpretation. John Wiley & Sons Ltd Press, 812.
- Loeb, N. G., S. Kato, W. Su, T. Wong, F. G. Rose, D. R. Doelling, J. R. Norris & X. Huang, 2012. Advances in understanding top of atmosphere radiation variability from satellite observations, Surveys in Geophysics, 33(3-4): 359-385.
- Memarian, H., S. K. Balasundram, J. B. Talib, C. T. B. Sung, A. M. Sood, K. Abbaspour, 2012. Validation of CA-Markov for Simulation of Land Use and Cover Change in the Langat Basin, Malaysia, Journal of Geographic Information System, 4(6): 542-554
- Meyer, D. & F. T. Wien, 2015. Support vector machines, The Interface to libsvm in package e1071.
- Modaberi, A. & J. Mirzaei, 2017. Study of decline effect on structure of central Zagros forests, Journal of Forest Research and Development, 2(4): 325-336 (In Persian).
- Mohammadi, J. & S. Shataee, 2007. Forest stand density mapping using Landsat ETM+ data, Loveh forests, North of Iran. Proceedings of the 28th Asian association on remote sensing ACRS, Nov, pp. 12-16.
- Mohammadi, J., S. Shataee, M. Namiranian & E. Næsset, 2017. Modeling biophysical properties of broad-leaved stands in the hyrcanian forests of Iran using fused airborne laser scanner data and ultra Cam-D images, International Journal of Applied Earth Observation and Geoinformation, 61: 32-45.
- Naghavi, H., A. Fallah, S. Shataee, H. Latifi, J. Soosani, H. Ramezani & C. Conrad, 2014. Canopy cover estimation across semi-Mediterranean woodlands: application of high-resolution earth observation data, Journal of Applied Remote Sensing, 8(1): 083524-083524.
- Naseri, F., 2003. Classification of forest types and estimation of their quantitative parameters in arid and semi-arid regions using satellite data (case study: National Park of Khabr-Kerman province). PhD. Thesis. Faculty of Natural Resources. University of Tehran, Tehran, Iran, 202 p. (In Persian)
- Ng, W. T., M. Meroni, M. Immitzer, S. Böck, U. Leonardi, F. Rembold, H. Gadain & C. Atzberger, 2016. Different methods and temporal imagery selection for Hargeisa, Somaliland, International Journal of Applied Earth Observation and Geoinformation, 53: 76-89.
- Nguyen, T. T. H., 2010. Applying different methods for prediction of stand volume using SPOT 5 data. Proceeding of The 31th Asian conference remote sensing ACRS, TS02-4. Nov. pp. 1-5.
- Ok, A. O., O. Akar & O. Gungor, 2012. Evaluation of random forest method for agricultural crop classification, European Journal of Remote Sensing, 45(1):421-432.
- Pal, M., 2005. Random Forest classifier for remote sensing classification, International Journal of Remote Sensing, 26(1): 217-222.
- Perry Jr, C. R. & L. F. Lautenschlager, 1984. Functional equivalence of spectral vegetation indices, Remote Sensing of Environment, 14(1-3): 169-182.
- Pesta, F., S. Bhatta, D. Helder & N. Mishra, 2015. Radiometric non-uniformity characterization and correction of Landsat 8 OLI using earth imagery-based techniques, Remote Sensing, 7(1): 430-446.
- Poursanidis, D., N. Chrysoulakis & Z. Mitraka, 2015. Ladnsat 8 vs. Landsat 5: A comparison based on urban and peri-urban land cover mapping, International Journal of Applied Earth Observation and Geoinformation, 35: 259-269.
- Prasad, A. M., L. R. Iverson & A. Liaw, 2006. Newer classification and regression tree techniques: Bagging and random forests for ecological prediction, Ecosystems, 9(2):181-199.
- Qi, J., A. Chehbouni, A. R. Huete, Y. H. Kerr & S. Sorooshian, 1994. A modified soil adjusted vegetation index, Remote Sensing of Environment, 48(2): 119-126.
- Rahdari, V., A. Soffianian, S. J. Khajaldin & N. S. Maleki, 2014. Identification of Sattelite Image Ability for Vegetation Cover Crown Percentage Mapping in Arid and Semi Arid Region (Case Study: Mouteh Wild Life Sanctuary),
Environmental Science and Technology, 4(59): 43-54 (In Persian).
- Ren, H. & G. Zhou, 2014. Determination of green above-ground biomass in desert steppe using litter-soil-adjusted vegetation index, European Journal of Remote Sensing, 47(1): 611-625
- Richardson, A. J. & C. L. Wiegand, 1977. Distinguishing vegetation from soil background Information, photogrammetric engineering and remote sensing, 43(12): 1541-1552.
- Roujean, J. L. & F. M. Breon, 1995. Estimating PAR absorbed by vegetation from bidirectional reflectance measurements, Remote Sensing of Environment, 51(3):375-384.
- Rouse, J. W., R. H. Haas, J. A. Schell, D. W. Deering & J. C. Harlan, 1974. Monitoring the vernal advancement of retrogradation of natural vegetation, NASA/GSFC, Type I II, Final Report, Greenbelt, MD, 371 p.
- Sagheb Talebi, Kh., T. Sajedi & F. Yazdanian, 2004. A look at the forests of Iran. Research Institute of Forests and Rangelands, Tehran, 56 p. (In Persian)
- Samaniego, L., A. Bárdossy & K. Schulz, 2008. Supervised classification of remotely sensed imagery using a modified k-NN technique, IEEE Transactions on Geoscience and Remote Sensing, 46(7): 2112-2125.
- Sarouei, S., 1999. An Investigation on possibility of forest density classification in Zagros forests, using satellite data. MSc thesis. Faculty of Natural Resources, University of Tehran, Tehran, Iran, 122 p. (In Persian)
- Sivanpillai, R., C. T. Smith, R. Srinivasan, M. G. Messina & X. B. Wu, 2006. Estimation of managed loblolly pine stand age and density with Landsat ETM+ data, Forest Ecology and Management, 223(1-3): 247-254.