کاربرد مدل‌های گپ در پیش‌بینی رویش سطح مقطع درختان گونه‌های تجاری جنگل‌های هیرکانی با احتساب شرایط اقلیمی (بررسی موردی: بخش گرازبن جنگل آموزشی - پژوهشی خیرود)‏

نوع مقاله : علمی - پژوهشی

نویسندگان

1 دانشجوی دکتری جنگلداری، دانشکده منابع‌طبیعی، دانشگاه تهران، کرج، ایران

2 استاد، گروه جنگلداری و اقتصاد جنگل، دانشکده منابع‌طبیعی، دانشگاه تهران، کرج، ایران‏

3 استاد، گروه مکانیک ماشین‌های کشاورزی، دانشکده مهندسی و فناوری کشاورزی، دانشگاه تهران، کرج‏، ایران

چکیده

بررسی­ها و شبیه­سازی­های حاصل از مدل­های اقلیمی جهانی نشان می­دهند که الگوهای دما و بارندگی در 50 الی 100 سال آینده، متحمل تغییراتی خواهند شد که به­نوبه خود می­توانند الگوهای رویشی توده­های جنگلی را تحت­ تأثیر قرار دهند. به­دلیل عدم توانایی مدل­های موجود در شبیه­سازی توده­های جنگلی تحت­تأثیر تغییر اقلیم، مدل هیبرید JABOWA-4 برای کشف پویایی آینده تحت سناریوهای اقلیمی مختلف، و همچنین به­دلیل عدم قطعیت روند تغییر اقلیم در آینده، سه سناریوی اقلیمی به­منظور کشف توسعة جهانی تحت تأثیر انتشار گازهای گلخانه­ای در این پژوهش استفاده شدند. پس از مقایسة نتایج شبیه­سازی و ارزش­های واقعی رویش قطری، R2 و RMSE به­ترتیب 98/0و 734/1 (cm2) محاسبه شد، که نشان­گر همبستگی بالای دو ارزش است. پاسخ گونه­ها به­ تغییر اقلیم جداگانه ارزیابی شد که راش و افرا با کاهش 31 و 25 درصدی رویش قطری، رابطة منفی قوی به­ تغییر اقلیم از خود نشان دادند. گونة بلوط ابتدا روندی افزایشی، سپس کاهشی 17 درصدی پیش ­گرفته و ممرز روندی افزایشی با مقدار کمتر از رویش­ واقعی را به­تصویر کشید. نتایج این پژوهش نشان داد که مدل­های گپ عملکرد به­نسبت خوبی در فراهم آوردن پیش­بینی­های محصول جنگل تحت­تأثیر تغییر اقلیم از خود نشان می­دهند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Application of gap models in projection of basal area increment of commercial trees in the ‎Hyrcanian region based on climate change effects (Case study: Gorazbon district, Kheyrud forest ‎research station)‎

نویسندگان [English]

  • shirin Varkouhi 1
  • Manoochehr Namiranian 2
  • Pedram Attarod 2
  • Mahmoud Omid 3
1 PhD Candidate of Forestry, Faculty of Natural Resources, University of Tehran, Karaj‎‎, I. R. Iran
2 Professor, Department of Forestry and Forest Economics, Faculty of Natural Resources, University of ‎‎Tehran, Karaj‎‎, I. R. Iran
3 Professor, Department of Agricultural Machinery, Faculty of Agricultural Engineering and Technology, ‎University of ‎Tehran, Karaj‎ ‎‎, I. R. Iran
چکیده [English]

Climate change studies and simulations conducted by GCM models show that patterns of temperature and rainfall will change over the next 50 to 100 years can affect patterns of forest stands increment. Growth and yield models do not have the ability to simulation forest stands under the effect of climate change. Due to lack of efficient models, JABOWA-4 as a hybrid model that can evaluate the population dynamic under climate change scenarios, and can explore the long-term aspects of forest composition, was applied in this study. In order to uncertainty of climate change trend in future, three greenhouse emission scenarios were formulated to explore future global developments with special emphasis on greenhouse gases. After comparison of modeled and real values of diameter growth, R2 and RMSE were calculated to be 0.98 and 1.734 (cm2), respectively, indicating a good correlation between two mentioned values. The response of species to climate change were assessed separately for Beech and Maple with 31 and 25 percent reduction in DBH increment, respectively, wich showed a negative response to climate change. Oak projected to increase slightly and after that decreased by17 percent under climate change and Hornbeam showed positive response to climate change but less than real values. The results of this study indicated that gap models are good at providing forest yield prediction affected by climate change.

کلیدواژه‌ها [English]

  • Climate change
  • Growth and yield model
  • Simulation
-Anonymous., Gorazbon Forestry Plan., Dept. of Natural resources, University of Tehran Report. 2006 (In Persian).
-Ashraf, M. I.; Meng, F.-R.; Bourque, C. P.-A.; MacLean, D. A., A novel modelling approach for predicting forest growth and yield under climate change. PloS one 2015, 10 (7), e0132066.
-Battles, J. J.; Robards, T.; Das, A.; Waring, K.; Gilless, J. K.; Biging, G.; Schurr, F., Climate change impacts on forest growth and tree mortality: a data-driven modeling study in the mixed-conifer forest of the Sierra Nevada, California. Climatic change 2008, 87 (1), 193-213.
-Battles, J.; Robards, T.; Das, A.; Stewart, W., Projecting climate change impacts on forest growth and yield for California’s Sierran mixed conifer forests. California Climate Change Center paper CEC-500-2009-047-D. Available at www. energy. ca. gov/2009publications/CEC-500–2009–047/CEC-500–2009–047-F. PDF 2009.
-Botkin, D. B., Forest dynamics: an ecological model. Oxford University Press on Demand: 1993.
-Charles, P.-A. B.; Hassan, Q. K.; Swift, D., Modelled Potential Species Distribution for Current and Projected Future Climates for the Acadian Forest Region of Nova Scotia, Canada.
-Chaumont, D., A guidebook on climate scenarios: Using climate information to guide adaptation research and decisions. Ouranos: Montréal, QC, Canada 2014.
-Ehman, J.; Fan, W.; Randolph, J.; Southworth, J.; Welch, N. T., An integrated GIS and modeling approach for assessing the transient response of forests of the southern Great Lakes region to a doubled CO2 climate. Forest Ecology and Management 2002, 155(1-3), 237-255.
-Engler, R.; Randin, C. F.; Thuiller, W.; Dullinger, S.; Zimmermann, N. E.; Araújo, M. B.; Pearman, P. B.; Le Lay, G.; Piedallu, C.; Albert, C. H., 21st century climate change threatens mountain flora unequally across Europe. Global Change Biology 2011, 17(7), 2330-2341.
-Fallah, A.; Heydari, M., Studying the diameter growth of Persian oak and its relationship with climatic parameters in Zagros forests (Case study: Sarab-Karzan forests of Ilam). Journal of Forest Research and Development 2018, 3(4), 361-175 (In Persian).
-Fang, J.; Lechowicz, M. J., Climatic limits for the present distribution of beech (Fagus L.) species in the world. Journal of Biogeography 2006, 33(10), 1804-1819.
-IPCC., Climate Change: The Physical Science Basis. Contribution of Working Group Ito the Fourth Assessment Report of the Inter-governmental Panel on Climate Change. Cambridge University Press, Cambridge, UK, 2007.
-Iverson, L. R.; Prasad, A. M., Potential redistribution of tree species habitat under five climate change scenarios in the eastern US. Forest Ecology and Management 2002, 155(1-3), 205-222.
-Kimmins, J., Modelling the sustainability of forest production and yield for a changing and uncertain future. The Forestry Chronicle 1990, 66(3), 271-280.
-Kramer, K.; Degen, B.; Buschbom, J.; Hickler, T.; Thuiller, W.; Sykes, M. T.; de Winter, W., Modelling exploration of the future of European beech (Fagus sylvatica L.) under climate change—range, abundance, genetic diversity and adaptive response. Forest Ecology and Management 2010, 259(11), 2213-2222.
-Landsberg, J., Physiology in forest models: history and the future. FBMIS 2003, 1, 49-63.
-Lee, K.; Goulding, C., Practicality of 3P sampling with accurate dendrometry for the pre-harvest inventory of plantations. New Zealand Journal of Forestry Science 2002, 32(2), 279-296.
-Marvi Mohadjer, M.R., Silviculture, second edition. University of Tehran press, 2012 (In Persian).
-Monserud, R. A., Evaluating Forest models in a sustainable forest management context. Forest Biometry, Modelling and Information Sciences 2003, 1(1), 35-47.
-Pinjuv, G.; Mason, E. G.; Watt, M., Quantitative validation and comparison of a range of forest growth model types. Forest Ecology and Management 2006, 236(1), 37-46.
-Reynolds, J. F.; Bugmann, H.; Pitelka, L. F., How much physiology is needed in forest gap models for simulating long-term vegetation response to global change? Challenges, limitations, and potentials. Climatic Change 2001, 51(3), 541-557.
-Ringvall, A.; Kruys, N., Sampling of sparse species with probability proportional to prediction. Environmental Monitoring and Assessment 2005, 104(1), 131-146.
-Stephenson, N. L., Climatic control of vegetation distribution: the role of the water balance. The American Naturalist 1990, 135(5), 649-670.
-Sun, H.-g.; Zhang, J.-g.; Duan, A.-g.; He, C.-y., A review of stand basal area growth models. Forestry studies in China 2007, 9(1), 85-94.
-Taleshi, H., GH. Jalali, J. Alavi, M. Hosseini, B. Naeimi, The effect of Climate Change on Geographical Distribution of Fagus Orientalis in Hyrcanian Forests. Iranian Journal of Forest 2019, 10(2), 251-266 (In Persian).
-Trasobares, A.; Zingg, A.; Walthert, L.; Bigler, C., A climate-sensitive empirical growth and yield model for forest management planning of even-aged beech stands. European Journal of Forest Research 2016, 135(2), 263-282.
-Vanclay, J. K., Modelling forest growth and yield: applications to mixed tropical forests. CAB international: 1994.
-Weiskittel, A. R.; Hann, D. W.; Kershaw Jr, J. A.; Vanclay, J. K., Forest growth and yield modeling. John Wiley & Sons: 2011.
-Wilby, R. L.; Dawson, C. W.; Murphy, C.; Connor, P.; Hawkins, E., The statistical downscaling model-decision centric (SDSM-DC): conceptual basis and applications. Climate Research 2014, 61(3), 259-276.
-Yaussy, D. A., Comparison of an empirical forest growth and yield simulator and a forest gap simulator using actual 30-year growth from two even-aged forests in Kentucky. Forest Ecology and Management 2000, 126(3), 385-398.