پهنه‌بندی حساسیت رویشگاه‌های مانگرو استان هرمزگان به مخاطرات محیطی بر اساس درصد تاج‌پوشش

نوع مقاله : علمی - پژوهشی

نویسندگان

1 استادیار، گروه علوم جنگل، دانشکده منابع طبیعی و علوم زمین، دانشگاه شهرکرد، شهرکرد، ایران

2 استادیار، مؤسسه تحقیقات جنگلها و مراتع کشور، سازمان تحقیقات، آموزش و ترویج کشاورزی، تهران، ایران.

چکیده

در پژوهش پیش­رو درجه حساسیت رویشگاه‌های مانگرو استان هرمزگان بر مبنای بررسی درصد تاج‌پوشش (به­عنوان شاخصی از مشخصه‌های ساختاری جنگل) طبقه‌بندی شد. بدین منظور با آماربرداری میدانی و ثبت قطر تاج مانگروها در قطعه­های نمونه، درصد تاج­پوشش در هر یک از قطعه­های نمونه محاسبه شد. سپس، با تجزیه و تحلیل تصاویر ماهواره‌ای و تهیه نقشه NDVI رویشگاه­های خمیر، تیاب و جاسک، بین درصد تاج­پوشش در قطعه­های نمونه و NDVI متناظر هر قطعه در سطح رویشگاه­ها رابطه رگرسیونی برقرار شد و با اجرای رابطه رگرسیونی روی نقشه NDVI هر رویشگاه، نقشه تغییرات مکانی درصد تاج­پوشش در سطح رویشگاه‌ها تهیه شد. در آخر، با استفاده از نقشه درصد تاج‌پوشش مانگروها و با استفاده از سامانه اطلاعات جغرافیایی، نقشه درجه حساسیت رویشگاه­ها در سه طبقه تاج‌پوشش کم، متوسط و زیاد تهیه شد. نتایج نشان داد که میانگین درصد تاج‌پوشش در رویشگاه‌های خمیر، تیاب و جاسک به‌ترتیب 62، 43 و 71 درصد است و بر این اساس، رویشگاه‌های جاسک و تیاب به‌ترتیب کمترین و بیشترین درجه حساسیت را نسبت­به وقوع تنش­ها و آشفتگی­های محیطی دارند. ویژگی‌های ژئومورفولوژیک محلی، مقدار رسوب­گذاری، تأسیسات و سازه‌های ساحلی، شرایط اقتصادی و اجتماعی منطقه، آلاینده­های زیست­محیطی و بالا آمدن سطح آب دریا با تأثیر بر ساختار و رویش مانگروها می­توانند از عوامل تفاوت در درجه حساسیت بین رویشگاه‌های مورد بررسی باشد. این پژوهش با تولید اطلاعات دقیق از درجه حساسیت رویشگاه‌های مانگرو هرمزگان توانسته است پیش­نیازهای اولیه برای اجرای برنامه‌های سازگاری با تغییر اقلیم و اولویت­بندی اقدامات حفاظتی و احیاء رویشگاه‌های مانگرو را فراهم کند.

کلیدواژه‌ها


عنوان مقاله [English]

Mapping the sensitivity of mangroves of the Hormozgan Province to environmental ‎hazards based on the canopy cover percentage

نویسندگان [English]

  • Davood Mafi-Gholami 1
  • Abolfazl Jaafari 2
1 Assistant Professor, Department of forest sciences, Faculty of natural resources and earth sciences, Shahrekord University, Shahrekord, Iran
2 Assistant Prof., Research Institute of Forests and Rangelands, Agricultural Research, Education and Extension Organization (AREEO), Tehran, I. R. Iran.
چکیده [English]

The present study was conducted to classify the sensitivity degree of mangrove habitats of the Hormozgan province based on canopy percentage (as an indicator of the structural characteristics of forest). For this purpose, by field survey and recording of mangrove crown diameter in the sample plots, the percentage of canopy cover in each sample plot was calculated. Then, by analyzing satellite images and mapping NDVI of habitats, a regression relation was fitted between the percentage of canopy cover in the sample plots and the corresponding NDVI values ​​at each vegetation level and by applying the regression relation on the NDVI map, canopy cover percentage spatial changes were mapped at each habitat. Finally, the map of the susceptibility of the Khamir, Tiab, and Jask habitats to three classes of low, medium and high was prepared using the mangrove canopy cover map and GIS techniques. The results showed that the average percentages of the canopy cover in the Khamir, Tiab, and Jask were 62, 43, and 71%, respectively, that indicate that Jask and Tiab have the lowest and highest sensitivity to environmental stresses and disturbances, respectively. Local geomorphologic features, sediment yield, coastal installations, economic and social conditions of the area, environmental pollutants, and sea level rise are among the influencing factors that cause differences in the degree of susceptibility between habitats. Producing accurate information on the sensitivity of mangrove habitats of Iran, this study has provided preliminary prerequisites for implementing climate change adaptation programs and prioritize conservation and restoration activities of mangroves.

کلیدواژه‌ها [English]

  • Crown
  • Geographic Information System
  • Remote Sensing
  • Modeling
  • NDVI‎.‎
-Allen, J. A.; Ewel, K. C.; Jack, J., Patterns of natural and anthropogenic disturbance of the mangroves on the Pacific Island of Kosrae. Wetlands Ecology and Management 2001, 9 (3), 291-301.
-Alongi, D. M., Mangrove forests: resilience, protection from tsunamis, and responses to global climate change. Estuarine, Coastal and Shelf Science 2008, 76 (1), 1-13.
-Armitage, A. R.; Highfield, W. E.; Brody, S. D.; Louchouarn, P., The contribution of mangrove expansion to salt marsh loss on the Texas Gulf Coast. PloS one 2015, 10 (5), e0125404.
-Asgari, Y.; Zobeiri M.; Sohrabi, H., Comparison of five distance sampling methods for estimating quantitative characteristics of Zagros Forests, Iranian Journal of Forest and Popular Research 2013, 21 (2), 316-328.
-Bihamta, N.; Soffianian, A. R.; Fakheran, S.; Pourmanafi, S., Incorporating CART algorithm and i for mapping Mangrove using Landsat 8 imagery, Journal of Forest Research and Development 2019, 5 (4), 557-569.
-Cavalcanti, V.; Soares, M.; Estrada, G.; Chaves, F., Evaluating mangrove conservation through the analysis of forest structure data. Journal of Coastal Research 2009, 390-394.
-Danehkar, A.; Mahmoudi, B.; Sabaii, M.; Ghadirian, T.; Sharifi N.; Petrosian, H., National document of sustainable management of mangroves of Iran. Forest, Range and Watershed Management Organization of Iran, 2013, 624 p. (In Persian)
-Dugan, J. E.; Emery, K. A.; Alber, M.; Alexander, C. R.; Byers, J. E.; Gehman, A.; McLenaghan, N.; Sojka, S. E., Generalizing ecological effects of shoreline armoring across soft sediment environments. Estuaries and coasts 2018, 41 (1), 180-196.
-Duke, N. C.; Watkinson, A. J., Chlorophyll-deficient propagules of Avicennia marina and apparent longer-term deterioration of mangrove fitness in oil-polluted sediments. Marine pollution bulletin 2002, 44 (11), 1269-1276.
-Ellison, J. C., Vulnerability assessment of mangroves to climate change and sea-level rise impacts. Wetlands Ecology and Management 2015, 23 (2), 115-137.
-Etemadi, H.; Samadi, S. Z.; Sharifikia, M.; Smoak, J. M., Assessment of climate change downscaling and non-stationarity on the spatial pattern of a mangrove ecosystem in an arid coastal region of southern Iran. Theoretical and Applied Climatology 2016, 126 (1), 35-49.
-FAO, Status and trends in mangrove area extent worldwide. By Wilkie, M.L. and Fortuna, S. Forest Resources Assessment Working Paper No. 63. Forest Resources Division. FAO, Rome, 2003.
-Gallopín, G. C., Linkages between vulnerability, resilience, and adaptive capacity. Global environmental change 2006, 16 (3), 293-303.
-Gilman, E. L.; Ellison, J.; Duke, N. C.; Field, C., Threats to mangroves from climate change and adaptation options: a review. Aquatic botany 2008, 89 (2), 237-250.
-Giri, C., Observation and monitoring of mangrove forests using remote sensing: Opportunities and challenges. Multidisciplinary Digital Publishing Institute: 2016.
-Goldsmith, F., Description and analysis of vegetation. Methods in plant ecology 1976.
-Heiskanen, J., Estimating aboveground tree biomass and leaf area index in a mountain birch forest using ASTER satellite data. International Journal of Remote Sensing 2006, 27 (6), 1135-1158.
-ICZM, Ports and Maritime Organization of Iran. Hazards Report, 2017, 256 p. (In Persian)
-Kathiresan, K.; Rajendran, N., Coastal mangrove forests mitigated tsunami. Estuarine, Coastal and shelf science 2005, 65 (3), 601-606.
-Ke, L.; Yu, K.; Wong, Y.; Tam, N., Spatial and vertical distribution of polycyclic aromatic hydrocarbons in mangrove sediments. Science of the Total Environment 2005, 340 (1-3), 177-187.
-Korhonen, L.; Korpela, I.; Heiskanen, J.; Maltamo, M., Airborne discrete-return LIDAR data in the estimation of vertical canopy cover, angular canopy closure and leaf area index. Remote Sensing of Environment 2011, 115 (4), 1065-1080.
-Kristensen, E.; Bouillon, S.; Dittmar, T.; Marchand, C., Organic carbon dynamics in mangrove ecosystems: a review. Aquatic botany 2008, 89 (2), 201-219.
-Lewis III, R. R.; Milbrandt, E. C.; Brown, B.; Krauss, K. W.; Rovai, A. S.; Beever III, J. W.; Flynn, L. L., Stress in mangrove forests: Early detection and preemptive rehabilitation are essential for future successful worldwide mangrove forest management. Marine Pollution Bulletin 2016, 109 (2), 764-771.
-Lovelock, C. E.; Ellison, J. C., Vulnerability of mangroves and tidal wetlands of the Great Barrier Reef to climate change. In: Johnson, J.E., Marshall, P.A. (Eds.), Climate Change and the Great Barrier Reef: A Vulnerability Assessment. Great Barrier Reef Marine Park Authority and Australian Greenhouse Office, Australia, 2007, p. 237–269.
-Macamo, C. d. C. F.; Adams, J. B.; Bandeira, S. O.; Mabilana, H. A.; António, V. M., Spatial dynamics and structure of human disturbed mangrove forests in contrasting coastal communities in Eastern Africa. Wetlands 2018, 38 (3), 509-523.
-Mafi-Gholami, D.; Zenner, E. K.; Jaafari, A.; Ward, R. D., Modeling multi-decadal mangrove leaf area index in response to drought along the semi-arid southern coasts of Iran. Science of the Total Environment 2019, 656, 1326-1336.
-Mafi-Gholami, D.; Zenner, E. K.; Jaafari, A., Mangrove regional feedback to sea level rise and drought intensity at the end of the 21st century. Ecological Indicators 2020, 110, 105972.
-Mafi-Gholami, D.; Feghhi, J.; Danehkar, A.; Yarali, N., Classification and Prioritization of Negative Factors Affecting on Mangrove Forests Using Delphi Method (a Case Study: Mangrove Forests of Hormozgan Province, Iran). Advances in Bioresearch 2015, 6 (3).
-Manson, F.; Loneragan, N.; Harch, B.; Skilleter, G.; Williams, L., A broad-scale analysis of links between coastal fisheries production and mangrove extent: a case-study for northeastern Australia. Fisheries Research 2005, 74 (1-3), 69-85.
-Nicolau, D.; Macamo, C. C.; Mabilana, H. A.; Tajú, A.; Bandeira, S. O., Mangrove change detection, structure and condition in a protected area of eastern Africa: the case of Quirimbas National Park, Mozambique. Western Indian Ocean Journal of Marine Science 2017, 16 (1), 47-60.
-Pellegrini, J.; Soares, M.; Chaves, F.; Estrada, G.; Cavalcanti, V., A method for the classification of mangrove forests and sensitivity/vulnerability analysis. Journal of Coastal Research 2009, 443-447.
-PGSC, Available from http://www.persiangu studies.com/fa/index.asp?ppagesandid 205. Accessed 21th September 2019. 2017.
-Safiari, S., Mangroves of Iran, Nature of Iran 2018, 2 (2), 49-57. (In Persian)
-Solomon, S.; Qin, D.; Manning, M.; Marquis, M.; Averyt, K.; Tignor, M.; Miller, H.; Chen, Z., Climate change 2007: The physical science basis. Intergovernmental Panel on Climate Change (IPCC), Cambridge University Press, Cambridge 2007.
-Tran Thi, V.; Tien Thi Xuan, A.; Phan Nguyen, H.; Dahdouh-Guebas, F.; Koedam, N., Application of remote sensing and GIS for detection of long-term mangrove shoreline changes in Mui Ca Mau, Vietnam. Biogeosciences 2014, 11 (14), 3781-3795.
-UNEP-WCMC, In the front line: shoreline protection and other ecosystem services from mangroves & coral reefs. UNEP-WCMC, Cambridge, UK, 2006, 33 Pp.
-Vaselli, S.; Bulleri, F.; Benedetti-Cecchi, L., Hard coastal-defence structures as habitats for native and exotic rocky-bottom species. Marine Environmental Research 2008, 66 (4), 395-403.