Determining the habitat suitability of Quercus castaneifolia C. A. Mey In order to plan restoration using species distribution modeling

Document Type : Scientific article

Authors

1 Ph.D. Student of Forestry, Department of Forest Sciences, Faculty of Natural Resources, Tarbiat Modares University, Mazandaran, I. R. Iran

2 Associate Professor, Department of Forest Sciences, Faculty of Natural Resources, Tarbiat Modares University, Mazandaran, I. R. Iran

3 Professor, Department of Forest Sciences, Faculty of Natural Resources, Tarbiat Modares University, Mazandaran, I. R. Iran

Abstract

Despite the potential of the Hyrcanian forests to maintain of Quercus castaneifolia, the abundance of this species has decreased drastically and most of the young stands of this species are seriously threatened. This research, using an integrated perspective, shows the distribution Q. castaneifolia species in the Hyrcanian forest with the aim of determining the optimal areas for reforestation using five different modeling methods including GAM, GLM, RF, CTA, and GBM. Rainfall and temperature maps are based on data collected from a network of weather stations, as well as soil data from Soil Grade database maps. Then, the most important independent variables affecting the distribution Q. castaneifolia were identified. The results obtained from the evaluation of the relative importance of the variables indicate that the amount of organic carbon, pH, changes in seasonal rainfall and rainfall in the coldest season of the year have the greatest relative importance in determining and developing the habitat of this species and the area has a favorable potential of 14.1 The percentage is for this species. The produced habitat suitability map is suggested as a basis for future forest restoration plans, especially in areas that are more affected by destruction.

Keywords

Main Subjects


Ahmadi, K.; Hosseini, S. M.; Tabari, M.; Nouri, Z., Modeling the potential habitat of English yew (Taxus baccata L.) in the Hyrcanian forests of Iran. Forest Research and Development 2019, 5 (4), 513-525. (In Persian)
Allouche, O.; Tsoar, A.; Kadmon, R., Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). Journal of applied ecology 2006, 43 (6), 1223-1232.
Amissah, L.; Mohren, G. M.; Bongers, F.; Hawthorne, W. D.; Poorter, L., Rainfall and temperature affect tree species distribution in Ghana. Journal of Tropical Ecology 2014, 30 (5), 435-446.
Babaie Kafaky, S.; Kiadaliri, H.; Mataji, A.; Akhavan, R.; Hodjati, S., Assessment of ecological capability and decline of Quercus castaneifolia CAM habitat in Hyrcanian forests (Case study: Savadkooh). International Journal of Environmental Science and Technology 2022, 1-14.
Chen, W.; Pourghasemi, H. R.; Kornejady, A.; Zhang, N., Landslide spatial modeling: Introducing new ensembles of ANN, MaxEnt, and SVM machine learning techniques. Geoderma 2017, 305, 314-327.
Cheng, L.; Chen, X.; De Vos, J.; Lai, X.; Witlox, F., Applying a random forest method approach to model travel mode choice behavior. Travel behaviour and society 2019, 14, 1-10.
Clewell, A. F. In Ecological restoration principes relative to Nothofagus pumilio (Poepp. & Endl.) Krasser (Nothofagaceae) forest restoration, Anales del Instituto de la Patagonia, SciELO Chile: 2015; pp 123-126.
Çoban, H. O.; Örücü, Ö. K.; Arslan, E. S., MaxEnt modeling for predicting the current and future potential geographical distribution of Quercus libani Olivier. Sustainability 2020, 12 (7), 2671.
García-Quijano, J. F.; Deckmyn, G.; Ceulemans, R.; Van Orshoven, J.; Muys, B., Scaling from stand to landscape scale of climate change mitigation by afforestation and forest management: a modeling approach. Climatic Change 2008, 86, 397-424.
Gholizadeh, A.; Bagherzadeh, A.; Keshavarzi, A., Model application in evaluating land suitability for OAK and PINE forest plantations in Northeast of Iran. Geology, Ecology, and Landscapes 2020, 4 (3), 236-250.
Grenouillet, G.; Buisson, L.; Casajus, N.; Lek, S., Ensemble modelling of species distribution: the effects of geographical and environmental ranges. Ecography 2011, 34 (1), 9-17.
Haidarian Aghakhani, M.; Tamartash, R.; Jafarian, Z.; Tarkesh Esfahani, M.; Tatian, M., Predicting the impacts of climate change on Persian oak (Quercus brantii) using species distribution modelling in central Zagros for conservation planning. Journal of Environmental Studies 2017, 43 (3), 497-511. (In Persian)
Hengl, T.; Mendes de Jesus, J.; Heuvelink, G. B.; Ruiperez Gonzalez, M.; Kilibarda, M.; Blagotić, A.; Shangguan, W.; Wright, M. N.; Geng, X.; Bauer-Marschallinger, B., SoilGrids250m: Global gridded soil information based on machine learning. PLoS one 2017, 12 (2), e0169748.
Herbohn, J.; Ota, L.; Gregorio, N.; Chazdon, R.; Fisher, R.; Baynes, J.; Applegate, G.; Page, T.; Carias, D.; Romero, C., The community capacity curve applied to reforestation: a framework to support success. Philosophical Transactions of the Royal Society B 2023, 378 (1867), 20210079.
Hidalgo, P.; Marín, J.; Quijada, J.; Moreira, J., A spatial distribution model of cork oak (Quercus suber) in southwestern Spain: A suitable tool for reforestation. Forest Ecology and Management 2008, 255 (1), 25-34.
Kjučukov, P.; Hofmeister, J.; Bače, R.; Vítková, L.; Svoboda, M., The effects of forest management on biodiversity in the Czech Republic: an overview of biologists’ opinions. iForest-Biogeosciences and Forestry 2022, 15 (3), 187.
Liao, Z.; Nobis, M. P.; Xiong, Q.; Tian, X.; Wu, X.; Pan, K.; Zhang, A.; Wang, Y.; Zhang, L., Potential distributions of seven sympatric sclerophyllous oak species in Southwest China depend on climatic, non-climatic, and independent spatial drivers. Annals of Forest Science 2021, 78 (1), 1-22.
Mahmoodi, S.; Ahmadi, K.; Zahravi, M.; Karami, O., Modeling of Iranian oak distribution in the southwest of Iran based on the presence-based approach Maximum Entropy (MaxEnt)‎. Forest Research and Development 2022, 8 (2), 113-131. (In Persian)
Mahmoudvand, S.; Khodayari, H.; Tarnian, F., Habitat modeling and determination of environmental factors affecting on distribution of Persian oak (Quercus brantii Lindl.) in forest habitats of Lorestan Province. Journal of Plant Ecosystem Conservation 2021, 9 (18), 363-388.
Marvi-Mohajer, M. Silviculture. University of Tehran Press, Iran, 2004; 378p. (In Persian)
Mas, B.; Riera, S.; Allué, E., Modelling Mediterranean oak palaeolandscapes using the MaxEnt model algorithm: The case of the NE Iberia under the Middle Holocene climatic scenario. Ecological Informatics 2023, 74, 101984.
McIver, J. D.; Starr, L., A literature review on the environmental effects of postfire logging. Western Journal of Applied Forestry 2001, 16 (4), 159-168.
McLaughlin, B. C.; Zavaleta, E. S., Predicting species responses to climate change: demography and climate microrefugia in C alifornia valley oak (Quercus lobata). Global change biology 2012, 18 (7), 2301-2312.
Mirzaei, M.; Bonyad, A. E.; Akhavan, R.; Naghdi, R., Decline modelling of Quercus brantii under effects of physiographic factors in Dalab forests of Ilam. Forest Research and Development 2019, 5 (2), 329-342. (In Persian)
Moradzadeh, F.; Babaei-Kafaki, S.; Mataji, A. Assessment of ecological competence of surface expansion through GIS (Case Study: Dadabad District in Lorestan Province). Natural Resources Research 2012, 2 (4), 11–23. (In Persian)
Naimi, B.; Araújo, M. B., sdm: a reproducible and extensible R platform for species distribution modelling. Ecography 2016, 39 (4), 368-375.
Pakzad, M.; Eslami, A., Site selection of suitable land for plantation development of Prosopis cineraria species using GIS (Case study: Rahmatabad watershed, Kerman province). Journal of RS and GIS for Natural Resources 2017, 8 (2), 48-61. (In Persian)
Rashidi, F.; Naseri, D., Evaluation and zoning for reforestation using the ANP fuzzy method (case study: Saqezchichay Watershed, Ardabil, Iran). Iranian Journal of Forest and Poplar Research 2020, 28 (1), 61-72. (In Persian
Safaei, M.; Tarkesh Esfahani, M., Habitat protection of Ferula Ovina Boiss. as a medicine plant using habitat potential modeling (suggested model: ecological niche factor analysis). Journal of Plant Ecosystem Conservation 2013, 1 (1), 105-122. (In Persian)
Santoro, A.; Venturi, M.; Bertani, R.; Agnoletti, M., A review of the role of forests and agroforestry systems in the FAO Globally Important Agricultural Heritage Systems (GIAHS) programme. Forests 2020, 11 (8), 860.
Sharifian, S.; Rezvani, M.; Rashidi, F., Ecological Capability for Forest Development Using AHP (Arangeh Watershed, Alborz Town. Journal of Environmental Science and Technology 2020, 22 (6), 221-233. (In Persian)
Swaine, M., Rainfall and soil fertility as factors limiting forest species distributions in Ghana. Journal of Ecology 1996, 419-428.
Tabibian, S.; Hashemi, A.; Firouzan, A.; HakimiAbed, M.; Bidarigh, S.; Kavusi, H., Assessing Ecological Capacity for Afforestation and Increasing Forest area Use Gamma and AHP Operator Efficiency. Journal of Environmental Science and Technology 2020, 22 (1), 49-60. (In Persian)
Taleshi, H.; Jalali, S. G.; Alavi, S. J.; Hosseini, S. M.; Naimi, B., Projection of climate change impacts on potential distribution of chestnut-leaved oak (Quercus castaneifolia CAM) using ensemble modeling in the Hyrcanian forests of Iran. Ecology of Iranian Forest 2020, 8 (15), 10-21. (In Persian)
Taleshi, H.; Maasoumi-Babarabi, M., Leaf morphological variation of Quercus brantii Lindl. along an altitudinal gradient in Zagros forests of Fars Province, Iran. European Journal of Experimental Biology 2013, 3 (5), 463-468.
Toledo, M. M.; Paiva, E. A. S.; Lovato, M. B.; de Lemos Filho, J. P., Stem radial increment of forest and savanna ecotypes of a Neotropical tree: relationships with climate, phenology, and water potential. Trees 2012, 26 (4), 1137-44.
Vessella, F.; Schirone, B., Predicting potential distribution of Quercus suber in Italy based on ecological niche models: Conservation insights and reforestation involvements. Forest Ecology and Management 2013, 304, 150-161.
Zhang, M.-G.; Zhou, Z.-K.; Chen, W.-Y.; Slik, J. F.; Cannon, C. H.; Raes, N., Using species distribution modeling to improve conservation and land use planning of Yunnan, China. Biological Conservation 2012, 153, 257-264.