مدل‌سازی تأثیر خشک‌دارهای ریز افتاده بر غنای گونه‌های گیاهی با استفاده از درخت رگرسیون تقویت‌شده

نوع مقاله : علمی - پژوهشی

نویسندگان

1 استادیار پژوهشی، بخش تحقیقات منابع طبیعی، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان گلستان، سازمان تحقیقات، آموزش و ترویج کشاورزی، گرگان، ایران

2 استادیار پژوهشی، بخش تحقیقات منابع طبیعی، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان مازندران، سازمان تحقیقات، آموزش و ترویج کشاورزی، ساری، ایران

چکیده

مقدمه و هدف: با وجود آن‌که خشک‌دارهای ریز حجم زیادی از بوم­سازگان جنگلی معتدله در شمال کشور را به خود اختصاص می‌دهد، نسبت به خشک‌دارهای بزرگ کمتر مورد توجه قرار گرفته است. خشک‌دارهای ریز، جزئی از جنگل‌های طبیعی هستند که علاوه بر افزایش بهره‌وری درختان جنگلی، کمک به زادآوری درختان، حفظ و بالا بردن رطوبت و مواد غذایی خاک و ذخیره‌سازی بلندمدت کربن، با تقویت عملکرد زیستگاه‌های نوظهور، نقشی مهم در غنای گونه‌های گیاهی زیرآشکوب برعهده دارند. از این‌رو، عدم توجه به خشک‌دارهای ریز، سبب برآورد اشتباه، کل حجم خشک‌دار و نقش کلیدی آن بر عملکرد بوم­سازگان جنگل می‌شود. بنابراین پژوهش پیش‌رو در نظر دارد از روش درخت رگرسیون تقویت‌شده برای مدل‌سازی تغییرات غنای گیاهی در ارتباط با مشخصات خشک‌دار ریز در یک توده جنگلی کمتر دست‌خورده استفاده کند.
مواد و روش‌ها: بدین منظور، پس از استقرار 30 قطعه­نمونه 400 مترمربعی (20 در 20 متر) در توده بلوط – ممرزستان در جنگل‌های لوه در شرق استان گلستان، نوع و درصد پوشش علفی بر‌مبنای شاخص براون – بلانکه ثبت شد. در ادامه، تعداد گونه‌های علفی ثبت‌شده در هر قطعه‌نمونه، مبنای محاسبه غنای گونه‌ای قرار گرفت. برای اندازه‌گیری حجم خشک‌دارهای ریز، راستای اضلاع قطعه‌نمونه 400 مترمربعی مبنای محاسبه قرار داده شد. از این‌رو، در راستای اضلاع هر قطعه‌نمونه و در قالب یک خط­نمونه با مجموع طولی 80 متر (برابر با محیط هر قطعه‌نمونه)، خشک‌دارهای ریز متقاطع با خط­نمونه شناسایی شد. نوع گونه درختی هر یک از خشک‌دارهای ریز مشخص و با‌توجه به قطر متقاطع با خط­نمونه، خشک‌دارهای ریز در یکی از سه طبقه قطری 1 تا 5/2 سانتی‌متر، 5/2 تا 5/4 سانتی‌متر و 5/4 تا 5/7 سانتی‌متر قرار گرفت. برای اندازه‌گیری درصد رطوبت و ماده آلی خاک، نمونه خاک از عمق صفر تا 15 سانتی‌متر مرکز هر قطعه­نمونه، برداشت شد. درصد رطوبت خاک با استفاده از اختلاف بین وزن تر و خشک خاک و همچنین مقدار ماده آلی خاک با روش والکی-بلاک در آزمایشگاه به­دست آمد. برای برازش مدل درخت رگرسیون تقویت‌شده از بسته gmb در زبان برنامه‌نویسی R استفاده شد. از‌این‌رو در این روش از ترکیب دو الگوریتم "درخت رگرسیون و طبقه‌بندی" و "تقویت" استفاده شد. در این پژوهش برای رسیدن به تعداد درخت بهینه، عدد ۱۰۰۰ مبنای شروع کار قرار گرفت. در این پژوهش، مقدار غنای گونه‌ای در هر قطعه­نمونه به­عنوان متغیر پاسخ و متغیرهای درصد شیب، جهت شیب، ارتفاع از سطح دریای آزاد، درصد رطوبت خاک، درصد ماده آلی خاک، میانگین کل حجم خشک‌دار ریز، میانگین حجم خشک‌دار ریز در درجه اول پوسیدگی، میانگین حجم خشک‌دار ریز در درجه دوم پوسیدگی و نوع گونه خشک‌دار ریز به­عنوان متغیرهای پیشگو در نظر گرفته شد.
یافته‌ها: بر اساس نتایج، مدل اولیه برازش‌ داده‌شده در تعداد درخت برابر 7700 بالاترین دقت را نشان داد. لیکن، با‌توجه ‌به عدم تأثیرگذاری برخی از متغیرها در مدل، متغیرهای شیب، جهت شیب، ارتفاع از سطح دریا، نوع گونه خشک‌دار ریز و میانگین حجم خشک‌دار ریز کلاس پوسیدگی اول، این متغیرها بر اساس تغییرات انحراف به‌وجود ‌آمده، از مدل کنار گذاشته و مدل مجدد در تعداد درخت بهینه 7800 برازش داده شد. به استناد مدل نهایی درخت رگرسیون تقویت‌شده، با افزایش ماده آلی خاک به بیش از 15/2 درصد و در رطوبت خاک بالای 30 درصد، بیشترین اندازه شاخص غنای گونه‌ای ثبت شد. همچنین، اندازه بالای خشک‌دار از کلاس قطری اول و با درجه دارای پوسیدگی، سبب افزایش غنای گیاهی در منطقه موردبررسی شد. در این پژوهش، ثبت ضریب تببین بالای 992/0 با مجذور میانگین مربعات خطای 039/0، نشان‌دهنده دقت بالای مدل درخت رگرسیون تقویت‌شده است.
نتیجه‌گیری کلی: یافته‌های تحقیق نشان داد که خشک‌دارهای ریز با ایجاد شرایط زیستگاهی مطلوب، غنای گیاهان علفی را افزایش داده و حفظ این مؤلفه در افزایش ماده آلی خاک جنگل دارای اهمیت است. نرخ تجزیه بالا در خشک‌دارهای ریز نسبت به خشک‌دارهای بزرگ سبب می‌شود تا ضمن حفظ و افزایش رطوبت خاک، در مدت زمان کوتاهی مواد آلی موجود در چوب در اختیار لایه خاک قرار گیرد. در سالیان اخیر، برخی از کارشناسان حوزه منابع طبیعی، به جمع‌آوری خشک‌دارهای ریز و استفاده از آنها در صنایع سلولزی تأکید داشته‌اند. بخش بزرگی از این نظرات در سایه کوچک‌نمایی حجم و نقش خشک‌دار ریز و نبود اطلاعات کافی در مورد این مؤلفه بسیار مهم، وجاهت علمی نیز پیدا کرده است. درصورتی­که یافته‌های این تحقیق به­صورت کاملاٌ مشخص نشان می‌دهد که جمع‌آوری و حذف خشک‌دارهای ریز، حداقل بر رطوبت و ماده آلی خاک و در نتیجه بر غنای گونه‌های گیاهی تأثیر منفی بر جای خواهد گذاشت. انجام پژوهش­های مشابه و تکمیلی با در نظر گرفتن متغیرهای غذایی خاک و همچنین دیگر شاخص‌های پوشش گیاهی، می‌تواند در تأیید یا رد این نتیجه کمک قابل توجهی نماید.      

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Modeling the role of FWD on plant species richness using BRT

نویسندگان [English]

  • Saeid Shabani 1
  • Ali Asghar Vahedi 2
1 Research Assistant, Research Department of Natural Resources, Golestan Agricultural and Natural Resources Research and Education Center, AREEO, Gorgan, I. R. Iran
2 Research Assistant, Research Department of Natural Resources, Mazandaran Agricultural and Natural Resources Research and Education Center, AREEO, Sari, Iran
چکیده [English]

Background and objectives: Plant Species Richness (PSR) plays an important role in forest ecosystem functions and services. Despite the fact that Fine Woody Debris (FWD) occupy a large volume of the temperate forest ecosystem in the north of Iran, they have received less attention than Coarse Woody Debries (CWD). FWD is a component of natural forests, in addition to increasing the productivity of forest trees, helping to trees regeneration, maintaining and increasing soil moisture and nutrients, and long-term carbon storage, contribute the enhanced function of newly developing microhabitats with an important function in plant understory richness. Therefore, not paying attention to FWD leads to wrong estimation of the total volume of woody debries and its key role on the performance of forest ecosystems. Therefore, it was considered for current study that Boosted Regression Tree (BRT) machine learning technique used to model the PSR in unmanaged forest stands. For this aim, Oak - hornbeam stand in Loveh forest in the east of Golestan province, Iran was selected for sampling.
Methodology: For this purpose, 30 sample plots 400 m2 (20 m × 20 m) were set in the study area, and the type and percentage of plant cover was recorded based on the Braun-Blanquet index. In the following, the number of plant species recorded in each sample plot was the basis for calculating species richness. In order to measure the volume of FWD, the alignment of the sides of the sample plot of 400 square meters was used as the basis of calculation. Therefore, in line with the sides of each sample plot and in the form of a linear transect with a total length of 80 meters (equal to the perimeter of each sample plot), FWD intersected with the transect were identified. The names of tree species of each of the FWD is specified, and according to the cross diameter with the transect, the FWD were placed in one of three diameter classes: 1 to 2.5 cm, 2.5 to 4.5 cm, and 4.5 to 7.5 cm. To measure the percentage of soil moisture and organic matter, the soil was taken from the center of each sample to a depth of 15 cm. Soil moisture percentage was obtained by using the difference between wet and dry weight of soil and also the amount of soil organic matter by Walkley-Black method in the laboratory. The gmb package in R programming language was used to fit the boosted regression tree model. This model is one of the methods that helps to improve the performance of a single model by using the combination of multiple models. Therefore, in this method, the combination of two algorithms "regression tree and classification" and "boosting" is used. It should be noted that in this research, in order to reach the optimal number of trees, the number of 1000 was used as the starting point. In this study, the amount of species richness in each plot as the response variable, and the variables of slope percentage, slope aspect, altitude, soil moisture percentage, soil organic matter percentage, average of total volume of fwd, average volume of fwd in decay class 1, average volume of fwd in decay class 2 and the type of fwd were considered as predictor variables.
Results: Based on the results, the initial model fitted in the number of trees 7700 showed the highest accuracy. However, due to the lack of influence of some variables in the model, the variables of slope, slope aspect, altitude, the type of fwd and the average volume of fwd in decay class 1, these variables were excluded from the model based on the deviation changes. And the model was refitted in the optimal number of trees of 7800. Based on the final model of the BRT, the highest amount of species richness was recorded with the increase of soil organic matter to > 2.15% and in a soil moisture percentage >30%. Furthermore, a high amount of FWD from the first diameter class and with the decay class 2 (rotten) led to an increase in plant richness in the studied area. In the present study, the adjusted R squared > 0.99 with the Root Mean Square Error (RMSE) < 0.039 shows the high accuracy of the BRT model.
Conclusion: Although fwd comprise a large part of woody debries in the forests of the north of Iran, no specific place has been considered for it in any of the statistical protocols. This matter has led to the fact that there is no specific estimate of the volume of fwd and its role on the forest ecosystem is neglected. Therefore, this study was conducted with the aim of modeling the effect of this important component on the richness of plant species in a broadleaf stand in Loveh forests of Golestan province. The findings of the research showed that by creating favorable habitat conditions, the fwd increase the abundance of plant species and maintaining this component is important in increasing the organic matter of the forest soil. The high rate of decomposition in fwd compared to cwd causes that while maintaining and increasing the soil moisture, the organic materials in the wood are available to the soil layer in a short period of time. In recent years, some experts in the field of natural resources have emphasized the collection of fwd and their use in cellulose industries. A large part of these opinions has also found a scientific basis in the shadow of the minimization of the volume and role of the fwd and the lack of sufficient information about this very important component. If the findings of this research clearly show that the collection and removal of fwd will have a negative impact on soil moisture and organic matter and thus on the richness of plant species. Conducting similar and additional studies by including soil nutritional variables as well as other plant indicators can significantly help in confirming or rejecting this result

کلیدواژه‌ها [English]

  • Decay class
  • Machin learning
  • Transect
  • Understory
Amanzadeh, B.; Sagheb-Talebi, Kh.; Sotoudeh Foumani, B.; Fadaie, F.; Camarero, J. J.; Linares, J. C. Spatial Distribution and Volume of Dead Wood in Unmanaged Caspian Beech (Fagus orientalis L.) Forests from Northern Iran. Forests 2013, 4 (4), 751–765.
Azimnezhad, Z.; Badehian, Z.; Rezaeinejad, A.; Ahmadi, S. Effect of soil properties on Oak tree dieback (Quercus brantii Lindi.) and its ‎ecophysiological ‎responses to different degrees of dieback (case study: Dadabad in ‎Lorestan Province)‎. Forest Resrach and Development 2021, 7 (2), 263–278. (In Persian)
Barbosa, R. I.; Castilho, C. V.; Perdiz, R. O.; Damasco, G. Rodrigues, R.; Fearnside. P.M. Decomposition rates of coarse woody debris in undisturbed Amazonian seasonally flooded and unflooded forests in the Rio Negro-Rio Branco Basin in Roraima, Brazil. Forest Ecology and Management 2017, 397, 1–9.
Błonska, E.; Lasota, J.; Gruba, P. Enzymatic activity and stabilization of organic matter in soil with differentdetritus inputs. Journal of Soil Science and Plant Nutrition 2017, 63, 242–247.
Burton, J. E.; Bennett, L. T.; Kasel, S.; Nitschke, C. R.; Tanase, M. A.; Fairman, T. A.; Parker, L.; Fedrigo, M.; Aponte, C. Fire, drought and productivity as drivers of dead wood biomass in eucalypt forests of south-eastern Australia. Forest Ecology and Management 2021, 482, 118859.
Chećko, E.; Jaroszewicz, B.; Olejniczak, K.; Kwiatkowska-Falińska, A.J. The importance of coarse woody debris for vascular plants in temperate mixed deciduous forests. Canadian Journal of Forest Research 2015, 45, 1154–1163.
Chen, Y.; Sayer, E.J.; Li, Z.; Mo, Q.; Li, Y.; Ding, Y.; Wang, J. Nutrient limitation of woody debris decomposition in a tropical forest: contrasting effects of N and P addition. Functional Ecology 2016, 30, 295–304.
De Meo, I.; Becagli, C.; Casagli, A.; Paletto, A. Characteristics of deadwood and implications for biodiversity in Douglas fir (Pseudotsuga menziesii (Mirb.) Franco) planted forests in Italy. Trees, Forests and People 2022, 10, 100341.
De Sousa Trindade, A.; Silva Ferraz, J. B.; DeArmond, D. Removal of Woody Debris from Logging Gaps Influences Soil Physical and Chemical Properties in the Short Term: A Case Study in Central Amazonia. Forest Science 2021, 67 (6), 711–720.
Dettling, M.; Buhlmann, P. Boosting for tumor classification with gene expression data. Bioinformatics 2003, 19 (9), 1061–1069.
Dhar, A.; Forsch, K. B. C.; Naeth, M. A. Effects of Coarse Woody Debris on Soil Temperature and Water Content in Two Reconstructed Soils in Reclaimed Boreal Forest. Soil Systems 2022, 6 (62), 1–11.
Dulya, O. V.; Bergman, I. E.; Kukarskih, V. V.; Vorobeichik, E. L.; Smirnov, G. U.; Mikryukov, V. S. Pollution-induced slowdown of coarse woody debris decomposition differs between two coniferous tree species. Forest Ecology and Management 2019, 448, 312–320.
Ejtehadi, H.; Sepehry, A.; Akkafi, H. R. Methods of measuring biodiversity. Ferdowsi University of Mashhad Press 2009, p 226.
Elith, J.; Leathwick, J. R.; Hastie, T. A working guide to boosted regression trees. Journal of Animal Ecology 2008, 77–4, 802–813.
Frank, J.; Castle, M. E.; Westfall, J.A.; Weiskittel, A. R.; MacFarlane, D. W.; Baral, S. K.; Radtke, P. J.; Pelletier, G. Variation in occurrence and extent of internal stem decay in standing trees across the eastern US and Canada: evaluation of alternative modelling approaches and influential factors. Forestry 2018, 91 (3), 382–399.
Fekete, I.; Varga, C.; Biró, B.; Tóth, J.A.; Várbíró, G.; Lajtha, K.; Szabó, G.; Kotroczó, Z. The effects of litter production and litter depth on soil microclimate in a central European deciduous forest. Plant Soil 2016, 398, 291–300.
Felton, A.; Lindbladh, M.; Brunet, J.; Fritz, O. Replacing coniferous monocultures with mixed-species production stands: An assessment of the potential benefits for forest biodiversity in northern Europe. Forest Ecology and Management 2010, 260 (6), 939-947.
Frei, E. R.; Moser, B.; Wohlgemuth, T. Competitive ability of natural Douglas fir regeneration in central European close-to-nature forests. Forest Ecology and Management 2022, 503, 119767.
Goldin, S. R.; Hutchinson, M.F. Coarse woody debris reduces the rate of moisture loss from surface soils of cleared temperate Australian woodlands. Soil Research 2014, 52, 637–644.
Gora, E. M.; Sayer, E. J.; Turner, B. L.; Tanner, E. V. J. Decomposition of coarse woody debris in a long-term litter manipulation experiment: A focus on nutrient availability. Functional Ecology 2018, 32 (4), 1128–1138.
Gresh, J. M.; Courter, J. R. In Pursuit of Ecological Forestry: Historical Barriers and Ecosystem Implications. Frontiers in Forests and Global Change 2021, 4, 1–9.
Guo, L. B.; Bek, E.; Gifford, R. M. Woody debris in a 16-years old Pinus radiata plantation in Australia: Mass, carbon and nitrogen stocks, and turnover. Forest Ecology and Management 2006, 228, 145–151.
Han, J.; Kamber, M. Data Minig concepts and techniques. 2d. Ed. Morgan Kauffmann Pub. Co, United States of America, 2006, p 10.
Hedwall, P-O.; Brunet, J. Trait variations of ground flora species disentangle the effects of global change and altered land-use in Swedish forests during 20 years. Global Change Biology 2016, 22 (12), 4038-4047.
Hedwall, P-O.; Gustafsson, L.; Brunet, J.; Lindbladh, M.; Axelsson, A-L.; Strengbom, J. Half a century of multiple anthropogenic stressors has altered northern forest understory plant communities. Ecological Applications 2019, 29 (4), e01874.
Hunter, M. O.; M. Keller, D.; Morton, B.; Cook, M.; Lefsky, M.; Ducey, S. Structural dynamics of tropical moist forest gaps. Plos One 2015, 10 (7), e0132144.
Iijima, H.; Shibuya, M.; Saito, H. Effects of surface and light conditions of fallen logs on the emergence and survival of coniferous seedlings and saplings. Journal of Forest Research 2007, 12, 262–269.
Jonsson, B. G.; Ekström, M.; Esseen, P-A.; Grafström, A.; Ståhl, G.; Westerlund, B. Dead wood availability in managed Swedish forests – Policy outcomes and implications for biodiversity. Forest Ecology and Management 2016, 376, 174-182.
Karahalil, U.; Baskent, E. Z.; Sivrikaya, F.; Kiliç, B. Analyzing dead wood volume of Calabrian pine (Pinus brutia Ten.) in relation to stand and site parameters: a case study in Köprülü Canyon National Park. Environmental Monitoring and Assessment 2017, 189, 112.
Konôpka, B.; Šebeˇn, V.; Merganiˇcová, K. Forest Regeneration Patterns Differ Considerably between Sites with and without Windthrow Wood Logging in the High Tatra Mountains. Forests 2021, 12, 1349.
Kulha, N., Pasanen, L., Holmström, L., De Grandpré, L., Gauthier, S., Kuuluvainen, T., Aakala, T.  The structure of boreal old-growth forests changes at multiple spatial scales over decades. Landscape Ecology 2020, 35, 843–858.
Kushnevskaya, H.; Mirin, D.; Shorohova, E. Patterns of epixylic vegetation on spruce logs in late-successional boreal forests. Forest Ecology and Management 2007, 250, 25–33.
Lasota, J.; Piaszczyk, W.; Błonska, E. Fine woody debris as a biogen reservoir in forest ecosystems. Acta Oecologica 2022, 115 (103822), 1–6.
Lassauce, A.; Paillet, Y.; Jactel, H.; Bouget, M. Deadwood as a surrogate for forest biodiversity: meta-analysis of correlations between deadwood volume and species richness of saproxylic organisms. Ecological Indicators 2011, 11 (5), 1027-1039.
Law, S.; Eggleton, P.; Griffiths, H.; Ashton, L.; Parr, C. Suspended dead wood decomposes slowly in the tropics, with microbial decay greater than termite decay. Ecosystems 2019, 22, 1176–1188.
Levers, C.; Verkerk, P. J.; Müller, D.; Verburg, P. H.; Butsic, V.; Leitão, P. J.; Lindner, M.; Kuemmerle, T. Drivers of forest harvesting intensity patterns in Europe. Forest Ecology and Management 2014, 315, 160-172.
Merganic, J.; Merganicová, K.; Vlcková, M.; Dudáková, Z.; Ferencík, M.; Mokroš, M.; Juško, V.; Allman, M.; Tomcík, D. Deadwood Amount at Disturbance Plots after Sanitary Felling. Plants 2022, 11 (987), 1–16.
Mikkonen, N.; Leikola, N.; Halme, P.; Heinaro, E.; Lahtinen, A.; Tanhuanpää, T. Data modeling of dead wood potential based on tree stand. Forests 2020, 11 (913), 1–21.
Oettel, J.; Lapin, K.; Kindermann, H.; Steiner, H.; Schweinzer, K-M.; Frank, G.; Essl, F. Patterns and drivers of deadwood volume and composition in different forest types of the Austrian natural forest reserves. Forest Ecology and Management 2020, 463 (118016), 1–14.
Okada, M.; Hirao, T.; Kaji, M.; Goto, S. Role of fallen logs in maintaining the species diversity of understorybvascular plants in a mixed coniferous and broad-leaved forest in Hokkaido, northern Japan. Forest Ecology and Management 2019, 448, 249–255.
Piaszczyk, W.; Lasota, J.; Błońska, E. Effect of Organic Matter Released from Deadwood at Different Decomposition Stages on Physical Properties of Forest Soil. Forests 2020, 11 (24), 1–13.
Pizňak, M.; Bačkor, M. Lichens affect boreal forest ecology and plant metabolism. South African Journal of Botany 2019, 124, 530-539.
Pourbabaei, H.; Haghgooy, T. Effect of physiographical factors on tree species diversity (case study: Kandelat Forest Park). Iranian Journal of Forest and Poplar Research 2013, 21 (2), 243–255. (In Persian)
Pourbabaei, H.; Heidari, M.; Naghilou, M.; Begim Faghir, M., Relationship between vegetation and environmental factors in the Anatolian oak (Quercus petraea L. subsp. iberica (Stev.) Krassiln) habitat: a case study of Asalem forests, Guilan. Journal of Plant Research (Iranian Journal of Biology) 2015, 28 (1), 53–62. (In Persian)
Russell, M. B.; Fraver, S.; Aakala, T.; Gove, J.H.; Woodall, C.W.; D’Amato, A.W.; Ducey, M.J. Quantifyingcarbon stores and decomposition in dead wood: A review. Forest Ecology and Management 2015, 350, 107–128.
Sarvazad, A.; Fallah, A.; Vahedi, A. A. Changes in carbon storage of Quercus brantii Lindl in relation to physiographic factors ‎of Zagros forests. Forest Resrach and Development 2022, 8 (3), 329–341. (In Persian)
Schütz, J.-P.; Saniga, M.; Diaci, J.; Vrška, T. Comparing close-to-naturesilviculture with processes in pristine forests: lessons from Central Europe. Annals of Forest Science 2016, 73, 911–921.
Sefidi, K.; Etemad, V. The amount and quality of dead trees in a mixed beech forest with different management histories in northern Iran. Biological Diversity 2014, 15, 162–168.
Sefidi, K.; Marvie Mohadjer, M. R.; Mosandl, R.; Copenheaver, C. A. Coarse and Fine Woody Debris in Mature Oriental Beech (Fagus orientalis Lipsky) Forests of Northern Iran. Natural Areas Journal 2013, 33 (3), 248–255.
Stokland, J. N.; Siitonen, J.; Jonsson, B. G. Biodiversity in dead wood. Cambridge University Press, Cambridge, UK. 2012.
Stutz, K.; Kaiser, K.; Wambsganss, J.; Santos, F.; Berhe, A.A.; Lang, F. Lignin from white-rotted Europeanbeech deadwood and soil functions. Biogeochemistry 2019, 145, 81–105.
Taheri Abkenar, K.; Mirzaei, M.; Mohammadi, M. A.; Saeidi, H. R. Effects of dead trees on natural regeneration of beech trees in different physiographic ‎conditions (case study: Siahroud forests, Langaroud)‎. Forest Resrach and Development 2022, 8 (3), 235–247. (In Persian)
Vincent, A. G.; Turner, B. L.; Tanne, E. V. J.  Soil organic phosphorus dynamics following perturbation of litter cycling in a tropical moist forest. European Journal of Soil Science 2010, 61, 48–57.
Wardle, D. A.; Bardgett, R. D.; Klironomos, J. N.; Setälä, H.; van der Putten, W. H.; Wall, D. H. Ecological linkages between aboveground and belowground biota. Science 2004, 304, 1629–1633.
Woodall, C.; Williams, M.S. Sampling Protocol, Estimation, and Analysis Procedures for the Down Woody Materials Indicator of the FIA Progam. General Technical Report NC-256, United States Department of Agriculture (USDA) 2005, p 56.