بررسی تأثیرگذاری متغیرهای محیطی مختلف در مدلسازی پراکنش گونه سرخدار (Taxus baccata L.) با استفاده از مدل MAXENT در جنگل‌های هیرکانی

نوع مقاله : علمی - پژوهشی

نویسندگان

1 دانشجوی دکتری علوم و مدیریت جنگل دانشکدۀ منابع طبیعی و علوم دریایی، دانشگاه تربیت مدرس، نور، ایران

2 دانشیار گروه علوم و مهندسی جنگل دانشکدۀ منابع طبیعی و علوم دریایی، دانشگاه تربیت مدرس، نور، ایران

چکیده

مقدمه و هدف: نقشه پراکنش گونه‌های گیاهی نقش برجسته‌ای در ارزیابی حفاظت منطقه‌ای، توسعه برنامه‌ریزی و اقدامات مدیریتی دارند. مدل‌های پراکنش گونه‌ای (SDM) به­عنوان الگوریتم تحلیلی-آماری تعریف می‌شوند که با توجه به مشاهدات میدانی و نقشه‌های محیطی می‌توانند دامنه جغرافیایی پراکنش گونه‌های گیاهی را تعیین کنند. از آن‌جا که گونه سرخدار یکی از گونه‌های با ارزش جنگل‌های هیرکانی است و از مهم‌ترین درختان دیرزیست این ناحیه محسوب می‌شود، دستیابی به نقشه پراکنش و مناطق دارای پتانسیل حضور این گونه و مشخص کردن عوامل تاثیرگذار بر حضور این گونه در سطح جنگل‌های هیرکانی با هدف انجام حفاظتی از گونه‌های ذخیره‌گاهی ضرورت دارد. در میان مدل‌های پراکنش گونه، مدل حداکثر آنتروپی (MaxEnt) یکی از محبوب‌ترین مدل‌هایی است که مزایایی را در بین این رویکردها نشان می‌دهد. مدل حداکثر آنتروپی ﯾﮑﯽ از ﻣﻬﻢﺗﺮﯾﻦ روش‌ها بر اساس نقاط صرفاً حضور است و ﻛﺎراﻳﻲ ﺧﻮﺑﻲ را در اﻳﻦ زﻣﻴﻨﻪ ﻧﺸﺎن داده اﺳـﺖ. ﺣﺴﺎﺳﯿﺖ اﯾﻦ روش به وﺟﻮد ﺗﻌﺪاد ﮐﻢ ﻧﻘﺎط ﺣﻀﻮر ﻧﯿﺰ کم است و با حداقل پنج نقطه حضور نیز قابلیت استفاده دارد. همچنین قادر به مدلسازی روابط پیچیده و غیر­خطی بین متغیر پاسخ و پیش‌بینی­کننده‌ها نیز هستند. با این حال، سهولت و سادگی اجرای آن است که آن را به برجسته‌ترین و پرکاربردترین تکنیک SDM در بررسی­های علمی سوق داده است. هدف از این پژوهش پاسخ به این سؤال است که کدامیک از متغیرهای محیطی بر پراکنش سرخدار تاثیرگذار است؟
مواد و روش‌ها: در این پژوهش ابتدا رویشگاه‌های اصلی سرخدار در جنگل‌های هیرکانی در سه استان گلستان، مازندران و گیلان شناسایی شده و تعداد 1614 حضور گونه سرخدار ثبت شد. سپس متغیرهای محیطی شامل متغیرهای زیست اقلیمی از پایگاه جهانی World Clime، متغیرهای محیطی از پایگاه SoilGrids و متغیرهای توپوگرافی حاصل از Dem یک کیلومتر برای منطقه مورد نظر آماده شد. برای مدلسازی، از مدل MaxEnt استفاده شد؛ به این صورت که یکبار تنها با استفاده از متغیر اقلیمی (M1)، یکبار با ترکیب متغیر اقلیمی و توپوگرافی (M2)، یکبار در ترکیب متغیرهای اقلیمی و خاکی (M3) و در نهایت با تمام متغیرهای محیطی با درنظر گرفتن همبستگی موجود بین متغیرها مدل MaxEnt اجرا شد. در این پژوهش از MaxEnt بهینه با پنج ضریب منظم‌سازی مختلف (0.5، 1، 2، 3 و 4) در ترکیب با ویژگی‌های مختلف (L، LQ، H، LQH، LQHP) استفاده شد. همچنین، تنظیمات مدل MaxEnt بهینه بر اساس معیارهای ارزیابی وابسته به آستانه (یعنی نرخ حذف) برای یافتن بهترین شاخص­هایی که میانگین ارزیاب‌ها را در اعتبارسنجی به بیشینه می‌رسانند، استفاده شد. پس از شناسایی تنظیمات مناسب و بهینه MaxEnt، سایر گزینه‌های انتخاب­شده در این پژوهش شامل روش block با 5000 نقطه پس­زمینه است. برای ارزیابی عملکرد مدل و بهبود عملکرد از سطح زیر منحنی مشخصه عملیاتی گیرنده (AUC) به عنوان یک معیار مرسوم استفاده شد.
یافته‌ها: نتایج نشان داد که مدل 3 که شامل متغیرهای اقلیمی و خاکی بود کمترین مقدار AUC را داشت، درحالی­ که مدل 2 متشکل از متغیرهای اقلیمی و توپوگرافی سبب بهبود عملکرد مدل شد و مقدار AUC از 93/0 به 94/0 افزایش یافت. نتایج نشان داد که بیشترین مقدار AUC متعلق به مدل 4 با مقدار 96/0 بود که نشان‌دهنده افزایش دقت مدل در پیش‌بینی پس از حذف هم­خطی بین متغیرها است. همچنین بر اساس درصد سهم از میان متغیرهای زیست اقلیمی، متغیرهای bio2، bio3، bio7، bio18، از متغیرهای توپوگرافی ارتفاع و شیب به ترتیب در مدلسازی پراکنش گونه‌های سرخدار در جنگل‌های هیرکانی مهم‌ترین متغیرها بودند. این شش عامل، در مجموع 90 درصد در پراکنش گونه سرخدار نقش دارند در این میان تمام متغیرهای خاکی با هم 02/1 درصد در مدلسازی پراکنش سرخدار نقش داشتند.
نتیجه‌گیری: نتایج ما نه تنها درک ما را از نحوه عملکرد این عوامل غیرزیستی در پراکنش گونه سرخدار بهبود می‌بخشد، بلکه اهمیت هرکدام از متغیرهای پیش‌بینی­کننده بر حضور گونه در معرض خطر انقراض سرخدار را مشخص می‌کند. این پیش‌بینی‌کننده‌ها به تخمین پراکنش بالقوه درختان سرخدار در منطقه جنگلی شمال ایران کمک می‌کنند. این پژوهش یک مبنای علمی برای توسعه و اجرای یک برنامه حفاظتی با اولویت و هماهنگ برای حفاظت از این گونه درختی در محدوده جغرافیایی بومی آن فراهم می‌کند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Investigating the influence of different environmental variables in modeling the distribution of yew (Taxus baccata L.) using the MAXENT model in Hyrcanian forests

نویسندگان [English]

  • Shadi Habibikilak 1
  • Seyed Jalil Alavi 2
  • Omid Esmailzadeh 2
1 Department of Forest Sciences and Engineering, Faculty of Natural Resources and Marine Sciences, Tarbiat Modares University, Mazandaran, Nour, Iran
2 Associate Prof., Department of Forest Sciences and Engineering, Faculty of Natural Resources and Marine Sciences, Tarbiat Modares University, Mazandaran, Nour, Iran
چکیده [English]

Background and Objective: Mapping species distributions is vital for evaluating regional conservation priorities, informing planning efforts, and guiding management actions. Species Distribution Models (SDMs) are analytical-statistical tools that use field occurrence data and environmental variables to estimate the geographic range of species. The yew tree (Taxus baccata), a relict and long-lived species, is among the most ecologically valuable trees in the Hyrcanian forests. Mapping its current distribution and identifying potential suitable habitats—as well as understanding the environmental drivers of its presence—are essential steps toward effective conservation of this endangered species. Among SDMs, the Maximum Entropy (MaxEnt) model is widely regarded as one of the most effective, particularly for presence-only data. It performs well even with a limited number of occurrence records (as few as five points) and is capable of modeling complex, non-linear relationships between predictors and species presence. Its simplicity and ease of use have made MaxEnt the most commonly applied SDM technique in ecological studies. The main goal of this research was to identify which environmental variables most influence the distribution of the yew tree.
Material and Methods: To achieve this, the primary habitats of yew in the Hyrcanian forests across Golestan, Mazandaran, and Gilan provinces were identified, and 1,614 presence points were recorded. Environmental variables included bioclimatic layers from the WorldClim database, soil parameters from SoilGrids, and topographic variables derived from a 1-km resolution Digital Elevation Model (DEM). The MaxEnt model was run under four scenarios: (M1) using only climatic variables; (M2) combining climatic and topographic variables; (M3) combining climatic and soil variables; and (M4) integrating all environmental variables while accounting for multicollinearity. Model tuning involved testing five regularization multipliers (0.5, 1, 2, 3, and 4) in combination with various feature classes (L, LQ, H, LQH, LQHP). Threshold-dependent evaluation metrics—particularly the omission rate—were used to identify the optimal parameter settings that maximized model performance. After selecting the best configuration, modeling was performed using the block method with 5,000 background points. Model accuracy was assessed using the Area Under the Receiver Operating Characteristic Curve (AUC), a widely used measure in SDM evaluation.
Results: Model 3 (climatic + soil variables) produced the lowest AUC, while Model 2 (climatic + topographic variables) improved performance slightly, raising the AUC from 0.93 to 0.94. The highest predictive accuracy (AUC = 0.96) was achieved by Model 4, which incorporated all environmental variables after removing multicollinearity—indicating that accounting for variable interdependence enhances model reliability. Among all variables, the most influential predictors of yew distribution were the bioclimatic variables bio2, bio3, bio7, and bio18, along with elevation and slope. Collectively, these six variables explained 90% of the variation in yew presence, while soil variables contributed just 1.02% to the model's predictive power.
Conclusion: This study enhances our understanding of how abiotic factors shape the distribution of the endangered yew tree and underscores the significance of specific environmental predictors. These insights can inform the delineation of potential habitats and support targeted conservation planning in the Hyrcanian forests of northern Iran. Ultimately, the findings provide a scientific foundation for developing prioritized and coordinated conservation strategies to safeguard this valuable species within its native range.

کلیدواژه‌ها [English]

  • Environmental variables
  • Habitat suitability
  • Hyrcanian forests
  • species distribution modeling
Aertsen, W.; Kint, V.; Van Orshoven, J.; Özkan, K.; Muys, B., Comparison and ranking of different modelling techniques for prediction of site index in Mediterranean mountain forests. Ecological modelling 2010, 221(8), 1119-1130.
Ahmadi, K.; Alavi, S.J.; Amiri, G.Z.; Hosseini, S.M.; Serra-Diaz, J.M.; Svenning, J.C., The potential impact of future climate on the distribution of European yew (Taxus baccata L.) in the Hyrcanian Forest region (Iran). International Journal of Biometeorology 2020a, 64(9), 1451-1462.
Alavi, S.J.; Ahmadi, K.; Hosseini, S.M.; Tabari, M.; Nouri, Z., The importance of climatic, topographic, and edaphic variables in the distribution of yew species (Taxus baccata L.) and prioritization of areas for conservation and restoration in the north of Iran. Iranian Journal of Forest 2020, 11(4), 477-492. (In Persian).
Baldwin, RA., Use of maximum entropy modeling in wildlife research. Entropy. 2009, 11(4):854-66.
Benham, S.E.; Houston Durrant, T.; Caudullo, G.; de Rigo, D., Taxus baccata in Europe: distribution, habitat, usage and threats. In: European Atlas of Forest Tree Species 2016, Publ. Off. EU, Luxembourg, pp. e015921+.
Bertrand, R.; Perez, V.; Gegout, J.C., Disregarding the edaphic dimension in species distribution models leads to the omission of crucial spatial information under limate change: the case of Quercu pubescens in France. Glob. Change Biol 2012, 18, 2648–2660.
Beven, K.J.; Kirkby, M.J., A physically based, variable contributing area model of basin hydrology/Un modèle à base physique de zone d’appel variable de l’hydrologie du bassin versant. Hydrological sciences journal 1979, 24(1), 43-69.
Bolsinger, C.L.; Lloyd, J.D., Global yew assessment: status and some early result. In: S. Scher and Shimon B. Schwarzschild (Eds), Intern. Yew Resources Conference: Yew (Taxus), Conservation Biology and Interactions 1993.
Carter, A.; Kearney, M.; Mitchell, N.; Hartley, S.; Porter, W.; Nelson, N., Modelling the soil microclimate: Does the spatial or temporal resolution of input parameters matter? Frontiers of Biogeography 2015, 7(4).
Dhar, A.; Ruprecht, H.; Klumpp, R.; Vacik, H., Comparison of ecological condition and conservation status of English yew population in two Austrian gene conservation forests. Journal of Forestry research 2007, 18(3), 181-186.
Dobrowski, S.Z., A climatic basis for microrefugia: the influence of terrain on climate. Global change biology 2011, 17(2), 1022-1035.
Elith*, J. H.; Graham*, C.P.; Anderson, R.; Dudík, M.; Ferrier, S.; Guisan, A.J.; Hijmans, R.; Huettmann, F. R.; Leathwick, J.; Lehmann, A.; Li, J., Novel methods improve prediction of species’ distributions from occurrence data. Ecography 2006, 29(2), 129-151.
Elith, J.; Phillips, S.J.; Hastie, T.; Dudík, M.; Chee, Y.E.; Yates, C.J., A statistical explanation of MaxEnt for ecologists. Diversity and distributions 2011, 17, 43–57.
Esmailzadeh, O.; Hosseini, S.M., A phytosociological study of English Yew (Taxus Baccata L.) In Afratakhteh reserve. Pajouhesh Sazandegi 2007, 20, 17–24.
Esmailzadeh, O.; Hosseini, S.M.; Asadi, H.; Ghadiripour, P.; Ahmadi, A., Plant biodiversity in relation to physiographical factors in Afratakhteh Yew (Taxus baccata L.) Habitat, NE Iran. Iranian Journal of Plant Biology 2012, 4, 1–12.
Fourcade, Y.; Engler, J.O.; Rödder, D.; Secondi, J., Mapping species distributions with MAXENT using a geographically biased sample of presence data: a performance assessment of methods for correcting sampling bias. PLoS One 2014,9, e97122.
Habibi Kilak, S.; Alavi, S. J.; Esmailzadeh, O., Analyzing the response curves of box tree (Buxus hyrcana Pojark.) species in relation to environmental variables in Hyrcanian forests. Forest Research and Development 2020, 6(1): 1-14. doi: 10.30466/jfrd.2020.120837.
Hageneder, F., Yew: A History, History Press Series: History Press Limited., 2011
Hematzadeh, A.; Esmailzadeh, O.; Jalali, S. G.; Mirjalili, M. H.; Walas, Ł.; Yousefzadeh, H., Genetic diversity and structure of English yew (Taxus baccata L.) as a tertiary relict and endangered tree in the Hyrcanian forests. Biodiversity and Conservation 2023, 32(5), 1733-1753.
Hengl, T.; Mendes de Jesus, J.; Heuvelink, G.B.; Ruiperez Gonzalez, M.; Kilibarda, M.; Blagotic, A.; Shangguan, W.; Wright, M.N.; Geng, X.; Bauer-Marschallinger, B.; Guevara, M.A.; Vargas, R.; MacMillan, R.A.; Batjes, N.H.; Leenaars, J.G.; Ribeiro, E.; Wheeler, I.; Mantel, S.; Kempen, B., SoilGrids250m: global gridded soil information based on machine learning. PLoS ONE 2017 ,12, e0169748
Hijmans, R.J.; Cameron, S.E.; Parra, J.L.; Jones, P.G., Very high-resolution interpolated climate surfaces for global land areas. Int. J. Climatol 2005, 25, 1965–1978.
Jafari, SM.; Zarre, S.; Alavipanah, SK., Woody species diversity and forest structure from lowland to montane forest in Hyrcanian Forest ecoregion. Journal of Mountain Science 2013, 10:609-620.
Jalili, A.; Jamzad, Z., Red data book of plant species of Iran, 1999.
Karami-Kordalivand, P.; Esmailzadeh, O.; Willner, W.; Noroozi, J.; Alavi, S.J., Classification of forest communities (co-)dominated by Taxus baccata in the Hyrcanian forests (northern Iran) and their comparison with southern Europe. European Journal of Forest Research 2021, 1402(140), 463–476.
Kearney, M.; Porter, W., Mechanistic niche modelling: combining physiological and spatial data to predict species’ ranges. Ecology letters 2009, 12(4), 334-350.
Khan, A.M.; Li, Q.; Saqib, Z.; Khan, N.; Habib, T.; Khalid, N.; Tariq, A., MaxEnt modelling and impact of climate change on habitat suitability variations of economically important Chilgoza pine (Pinus gerardiana Wall.) in South Asia. Forests 2022, 13(5), 715.
Kovar-Eder, J., Vegetation dynamics in Europe during the Neogene. Deinsea 2003, 10:373–392
Larson, D.W.; Matthes, U.; Gerrath, J.A.; Larson, N.W.K.; Gerrath, J.M.; Nekola, J.C.; Walker, G.L.; Porembski, S.; Charlton, A., Evidence for the widespread occurrence of ancient forests on cliffs. Journal of Biogeography 2000, 27(2), pp.319-331.
Marvi Mohadjer, M.R., Silviculture, 1st ed.; Tehran University Press, 2005: p. (In Persian).
Mod, H. K.; Scherrer, D.; Luoto, M.; Guisan, A., What we use is not what we know: environmental predictors in plant distribution models. Journal of Vegetation Science 2016, 27(6), 1308-1322.
Moghbel Esfahani, F.; Alavi, S. J.; Hosseini, S. M.; Tabari Kochaksarai, M., Determining the habitat suitability of Quercus castaneifolia C. A. Mey In order to plan restoration using species distribution modeling. Forest Research and Development 2023, 9(3): 419-436. doi: 10.30466/jfrd.2023.54577.1654
Moisen, G.G.; Frescino, T.S., Comparing five modelling techniques for predicting forest characteristics. Ecological Modelling 2002, 157(2), 209–225.
Muscarella, R.; Galante, P.J.; Soley-Guardia, M.; Boria, R.A.; Kass, J.; Uriarte, M.; Anderson, R.P., ENMeval: an R package for conducting spatially independent evaluations and estimating optimal model complexity for ecological niche models. Methods in Ecology and Evolution 2014, 5, 1198–1205.
Norberg, A.; Abrego, N.; Blanchet, F.G.; Adler, F.R.; Anderson, B.J.; Anttila, J.; Araújo, M.B.; Dallas, T.; Dunson, D.; Elith, J.; Foster, S.D., A comprehensive evaluation of predictive performance of 33 species distribution models at species and community levels. Ecological monographs 2019, 89(3), p.e01370.
Phillips, S. J.; Anderson, R. P.; Schapire, R. E., Maximum entropy modeling of species geographic distributions. Ecological modelling 2006, 190(3-4), 231-259.
Phillips, S. J.; Dudík, M., Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography 2008, 31(2), 161-175.
Rather, Z. A.; Ahmad, R.; Dar, A. R.; Dar, T. U. H.; Khuroo, A. A., Predicting shifts in distribution range and niche breadth of plant species in contrasting arid environments under climate change. Environmental Monitoring and Assessment 2020, 193(7), 427.
Remya, K.; Ramachandran, A.; Jayakumar, S., Predicting the current and future suitable habitat distribution of Myristica dactyloides Gaertn. using MaxEnt model in the Eastern Ghats, India. Ecological engineering 20151 (82), 184-188.
Sinclair, S. J.; White, M. D.; Newell, G. R., How useful are species distribution models for managing biodiversity under future climates? Ecology and Society 2010, 15(1).
Sormunen, H.; Virtanen, R.; Luoto, M., Inclusion of local environmental conditions alters high-latitude vegetation change predictions based on bioclimatic models. Polar Biology 2011, 34(6), 883-897.
Svenning, J.C.; Magård, E., Population ecology and conservation status of the last natural population of English yew Taxus baccata in Denmark. Biol Conserv 1999, 88,173–182.
Thomas, P.A.; Polwart, A., Journal of Ecology 2003, 91, 489.
Valavi, R.; Guillera‐Arroita, G.; Lahoz‐Monfort, J.J.; Elith, J., Predictive performance of presence‐only species distribution models: A benchmark study with reproducible code. Ecological Monographs 2022, 92(1), e01486.
Vincenzi, S.; Zucchetta, M.; Franzoi, P.; Pellizzato, M.; Pranovi, F.; De Leo, G.A.; Torricelli, P., Application of a Random Forest algorithm to predict spatial distribution of the potential yield of Ruditapes philippinarum in the Venice lagoon, Italy. Ecological Modelling 2011, 222(8), 1471–1478.
Watling, D.P.; Cantarella, G.E., Model representation & decision-making in an ever-changing world: the role of stochastic process models of transportation systems. Networks and Spatial Economics 201515(3), 843-882.
Yang, X.Q.; Kushwaha, S.P.S.; Saran. S.; Xu, J.; Roy, P.S., Maxent modeling for predicting the potential distribution of medicinal plant, Justiciaadhatoda L. in Lesser Himalayan foothills. Ecological Engineering 2013, 51: 83–87.
Yuan, H.S.; Wei, Y.L.; Wang, X.G., Maxent modeling for predicting the potential distribution of Sanghuang, an important group of medicinal fungi in China. Fungal Ecology 2015, 17, 140–145.
Zare, H., Introduced and native conifers in Iran. Publication of Research Institute of Forests and Rangelands, Tehran, N 271, 2005; p498. (In Persian).