ارزیابی صحت داده‌‌های اقلیمی پایگاه‌های اطلاعاتی WorldClim و Chelsa در سه استان شمالی کشور

نوع مقاله : علمی - پژوهشی

نویسندگان

1 دانشجوی دکتری علوم و مهندسی جنگل، گرایش مدیریت جنگل، دانشکده منابع طبیعی و علوم دریایی، دانشگاه تربیت مدرس، نور، مازندران، ایران.

2 دانشیار گروه علوم و مهندسی جنگل، دانشکده منابع طبیعی و علوم دریایی، دانشگاه تربیت مدرس، نور، مازندران، ایران

چکیده

مقدمه و هدف: داده‌های محیطی و اقلیمی یکی از مهم‌ترین منابع ورودی برای مدلسازی پراکنش و تهیه نقشه مطلوبیت زیستگاه گونه‌های جانوری و گیاهی محسوب می‌شوند. با توجه به نقش کلیدی اقلیم در کنترل تمایز پوشش گیاهی در مقیاس منطقه‌ای، استفاده از داده‌های آب­وهوایی دقیق و با وضوح مکانی بالا، در صورت وجود طبقه‌بندی آماری کارآمد، می‌تواند جایگزین مناسبی برای ارزیابی محدودیت‌ها، آستانه‌ها و پراکنش بالقوه جنگل‌ها در یک چشم‌انداز وسیع باشد. هدف از این پژوهش، ارزیابی صحت داده‌های دو پایگاه اطلاعاتی WorldClim و Chelsa در مقایسه با داده‌های ایستگاه‌های هواشناسی واقع در محدوده جنگل‌های هیرکانی است.
مواد و روش‌ها: در این بررسی، ابتدا داده‌های اقلیمی دو پایگاه اطلاعاتی WorldClim و Chelsa به­ترتیب برای دو بازه زمانی (2000-1970) و (2010-1980)  دریافت شد. سپس، داده‌های مربوط به ایستگاه‌های سینوپتیک در سه استان گیلان، مازندران و گلستان، که درمجموع شامل 38 ایستگاه است، تحلیل شد. برای استخراج مقادیر هر Bio در مکان‌های ایستگاه‌ها، از نرم‌افزار R استفاده شد. در این راستا، از میان 19 متغیر زیست‌اقلیمی، Bio1 و Bio12  که به­ترتیب نشان‌دهنده میانگین دمای سالانه و مجموع بارندگی سالانه هستند، برای مقایسه با داده‌های ایستگاه‌ها انتخاب و مورد تحلیل قرار گرفتند.
یافته‌ها: نتایج نشان داد که داده‌های بارندگی هر دو پایگاه با داده‌های ایستگاه‌های هواشناسی تطابق نسبی دارند، اما تفاوت‌هایی نیز مشاهده شد. مقایسه داده‌های بارندگی Chelsa با ایستگاه‌های زمینی نشان‌دهنده الگوی پیچیده‌ای از همخوانی و تفاوت‌ها است. با وجود ضریب همبستگی بالای 84/0 که بیانگر ارتباط قوی بین داده‌های Chelsa و مشاهدات زمینی است، آزمون t زوجی نشان داد که داده­های پایگاه Chelsa به­طور سیستماتیک مقادیر بارش را کمتر از مقدار واقعی برآورد می‌کند. نتایج مقایسه داده‌های بارندگی WorldClim با ایستگاه‌های هواشناسی نشان‌دهنده همخوانی قابل توجهی بین این دو مجموعه داده است. ضریب همبستگی 85/0 و عدم وجود تفاوت معنی‌دار در آزمون t زوجی، بیانگر ارتباط قوی و تطابق خوب داده‌های بارندگی WorldClim با مشاهدات زمینی است. نتایج این پژوهش حاکی از آن است که همبستگی بین داده‌های دمای سالانه پایگاه Chelsa و ایستگاه‌ها برابر با 91/0 است، در حالی که این مقدار برای WorldClim برابر با 65/0 می‌باشد. این یافته‌ها نشان‌دهنده صحت بالاتر داده‌های دمای سالانه Chelsa نسبت به WorldClim در منطقه مورد بررسی است. نتایج این پژوهش نشان می‌دهد که پایگاه Chelsa در برآورد دمای سالانه در منطقه مورد بررسی عملکرد بسیار بهتری نسبت به WorldClim دارد. بنابراین، پیشنهاد می‌شود که در پژوهش‌های مرتبط با دما در این منطقه، داده‌های پایگاه Chelsa و در پژوهش­های مرتبط با بارندگی در این منطقه، داده­های پایگاه WorldClim مورد استفاده قرار گیرند.
نتیجه‌گیری: نتایج این پژوهش نشان می‌دهد که پایگاه‌های اطلاعاتی WorldClim و Chelsa از دقت قابل قبولی به­ترتیب برای متغیرهای بارندگی و دما برخوردار هستند و در بسیاری از موارد تطابق خوبی با داده‌های ایستگاه‌های سینوپتیک نشان داده‌اند. با این حال، برخی اختلافات به دلیل تفاوت در روش‌های درون‌یابی، تفکیک مکانی، و ترکیب منابع داده رخ داده که در مناطق با تغییرات ناگهانی اقلیمی برجسته‌تر است. با توجه به در دسترس بودن گسترده داده‌های WorldClim و Chelsa، این منابع می‌توانند به‌عنوان جایگزینی مناسب برای ایستگاه‌های زمینی در مدل‌سازی پراکنش گونه‌ای و سایر تحلیل‌های زیست‌محیطی مورد استفاده قرار گیرند. بدین ترتیب، استفاده از داده‌های این دو پایگاه می‌تواند به‌ویژه در بررسی­های بوم­شناسی، مدیریت منابع طبیعی و مدل‌سازی‌های اقلیمی نقش مؤثری ایفا کند. این پژوهش، به‌طور کلی نشان می‌دهد که پایگاه‌های داده‌ای جهانی می‌توانند ابزارهای ارزشمندی برای بررسی در مناطقی با کمبود داده‌های محلی باشند. برای پژوهش­های آتی، پیشنهاد می‌شود که دقت و کارایی این داده‌ها در مناطق مختلف بررسی شود و از داده‌های پایگاه‌های مورد بررسی در مدلسازی‌های پراکنش گونه‌ای و تحلیل‌های اقلیمی در مناطقی که فاقد ایستگاه‌های هواشناسی هستند، استفاده شود. همچنین، پایش دقیق‌تر داده‌ها و ارتقای روش‌های درون­یابی می‌تواند به افزایش دقت و قابلیت اعتماد این پایگاه‌ها کمک کند. در نهایت، انتخاب پایگاه داده مناسب برای هر متغیر اقلیمی با توجه به نتایج این پژوهش می‌تواند به بهبود کیفیت بررسی­های آتی در منطقه مورد پژوهش کمک کند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Evaluation of the accuracy of climatic data from the WorldClim and Chelsa databases in three northern provinces of Iran

نویسندگان [English]

  • Aref Hesabi 1
  • Seyed Jalil Alavi 2
  • Omid Esmailzadeh 2
1 PhD Student of Forest Management, Department of Forest Science, Faculty of Natural Resources and marine science, Tarbiat Modares University, Nur, Mazandaran, I. R. Iran
2 Associate Prof., Department of Forest Science, Faculty of Natural Resources and marine science, Tarbiat Modares University, Nur, Mazandaran, I. R. Iran
چکیده [English]

Background and Objective: Environmental and climatic data are essential inputs for modeling species distribution and creating habitat suitability maps for both plant and animal species. Given the pivotal role of climate in shaping vegetation patterns at the regional scale, the use of high-resolution and accurate climate data—especially when supported by robust statistical classification—can effectively substitute for ground-based assessments of ecological constraints, thresholds, and the potential distribution of forests across broad landscapes. This study aims to evaluate the accuracy of two widely used global climate databases, WorldClim and CHELSA, by comparing their data with that from meteorological stations located within the Hyrcanian forests.
Material and Methods: Climate data were obtained from the WorldClim and CHELSA databases for the periods 1970–2000 and 1980–2010, respectively. Observational data from 38 synoptic weather stations across the provinces of Guilan, Mazandaran, and Golestan were also analyzed. To extract the values of each bioclimatic variable (Bio) at the station locations, R software was used. Of the 19 available bioclimatic variables, two—Bio1 (annual mean temperature) and Bio12 (annual precipitation)—were selected for detailed comparison with station data.
Results: The results showed that precipitation data from both databases generally aligned with observations from meteorological stations, though some discrepancies were evident. CHELSA's precipitation data, while displaying a high correlation with ground observations (r = 0.84), were found—based on paired t-tests—to systematically underestimate actual precipitation levels. In contrast, WorldClim's precipitation data demonstrated stronger consistency with ground-based measurements, showing a correlation coefficient of 0.85 and no statistically significant difference in the paired t-test, indicating high predictive reliability. For annual mean temperature, CHELSA outperformed WorldClim, exhibiting a stronger correlation with station data (r = 0.91 vs. 0.65), suggesting higher accuracy in the study area. Based on these findings, CHELSA is more suitable for temperature-related studies, while WorldClim is preferable for precipitation-focused research in the Hyrcanian forest region.
Conclusion: This study demonstrates that WorldClim and CHELSA offer reliable data for precipitation and temperature variables, respectively, and often correspond well with ground-based measurements. However, some differences stem from varying interpolation methods, spatial resolutions, and data integration approaches—particularly in regions with abrupt climatic shifts. Given the widespread accessibility of both datasets, they can serve as practical alternatives to ground observations in species distribution modeling and other environmental assessments. Their use can be especially beneficial in ecological research, natural resource management, and climate modeling in data-scarce regions. Overall, this study highlights the value of global climate databases as useful tools in areas with limited meteorological infrastructure. For future research, it is recommended to assess the accuracy and applicability of these datasets in diverse regions and to integrate them into species distribution models and climate analyses where ground data are lacking. Additionally, improving data monitoring and refining interpolation techniques may further enhance the precision and reliability of these resources. Finally, selecting the most appropriate dataset for each climatic variable—based on the specific findings of this study—can improve the quality and reliability of future research in the Hyrcanian forest region.

کلیدواژه‌ها [English]

  • annual mean temperature
  • climatic variables
  • data validation
  • Hyrcanian forests
  • Weather stations
Abdollahnejad, A., Panagiotidis, D., Shataee Joybari, S., and Surový, P., Prediction of dominant forest tree species using quickbird and environmental data. Forests 20178(2), 42.‏
Ahmadi, K., Hosseini, S. M., Tabari, M., & Nouri, Z. Modeling the potential habitat of English yew (Taxus baccata L.) in the Hyrcanian forests of Iran. Forest Research and Development 20195(4), 513-525.
Amiri, M., Tarkesh, M., Jafari, R., Jetschke, G., Bioclimatic variables from precipitation and temperature records vs. remote sensing-based bioclimatic variables: Which side can perform better in species distribution modeling? Ecological informatics 202057, 101060.
Bazzato, E., Rosati, L., Canu, S., Fiori, M., Farris, E., Marignani, M., High spatial resolution bioclimatic variables to support ecological modelling in a Mediterranean biodiversity hotspot. Ecological Modelling 2021441, 109354.‏
Bellard, C., Thuiller, W., Leroy, B., Genovesi, P., Bakkenes, M., &Courchamp, F., Will climate change promote future invasions? Global Change Biology 2013, 19(12), 3740–3748.https://doi.org/10.1111/gcb.12344.
Berry, P.M.; Dawson, T.P.; Harrison, P.A.; Pearson, R.G., Modelling potential impacts of climate change on the bioclimatic envelope of species in Britain and Ireland. Global ecology and biogeography 2002, 11, 453–462.
Caldwell, A. R. SimplyAgree: An R package and jamovi Module for Simplifying Agreement and Reliability Analyses. Journal of Open-Source Software, 2022, 7(71), 4148.
Datta, A., Schweiger, O., Kühn, I., Origin of climatic data can determine the transferability of species distribution models. NeoBiota 2020, 59: 61–76.
Duan, Z., Bastiaanssen, W. G. M., & Liu, J., Monthly and annual validation of TRMM Mulitisatellite Precipitation Analysis (TMPA) products in the Caspian Sea Region for the period 1999–2003. IEEE International Geoscience and Remote Sensing Symposium 2012, 3696-3699.
Elith J, Leathwick JR., Species Distribution Models: ecological explanation and prediction across space and time. Annual Review of Ecology, Evolution, and Systematics 2009, 40: 677–697.
Fick, S. E., Hijmans, R. J., WorldClim 2: new 1‐km spatial resolution climate surfaces for global land areas. International journal of climatology 2017, 37(12), 4302-4315.‏
Guisan, A., Thuiller, W., Zimmermann, N. E., Habitat suitability and distribution models: With applications in R. Cambridge University Press 2017, https://books.google.com/books?hl=en&lr=&id=rYswDwAAQBAJ&oi=fnd&pg=PR12&dq=Habitat+suitability+and+distribution+models:+With+applications+in+R.+&ots=IUjSmA82zO&sig=h09sZbrQ3gQWrEeNsSjVLdnWOJk#v=onepage&q&f=false
Heikkinen, R. K., Luoto, M., Araújo, M. B., Virkkala, R., Thuiller, W., Sykes, M. T., Methods and uncertainties in bioclimatic envelope modelling under climate change. Progress in Physical Geography 200630(6), 751-777.
Hijmans R. _terra: Spatial Data Analysis_. R package version 1.7-83, 2024 <https://CRAN.R-project.org/package=terra>. H. Wickham. ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York, 2016.
J.M. Bland, D.G. Altman Statistical methods for assessing agreement between two methods of clinical measurement Lancet, 1986, pp. 307-310
Karger, D. N., Conrad, O., Böhner, J., Kawohl, T., Kreft, H., Soria-Auza, R. W., Zimmermann, N.E., Linder, H.P. Kessler, M., Climatologies at high resolution for the earth’s land surface areas. Scientific data 20174(1), 1-20.
Keikhosravi Kiany, M.S., S.A. Masoodian, Balling Jr, R.C., Montazeri, M., Evaluation of the TRMM 3B42 product for extreme precipitation analysis over southwestern Iran. Advances in Space Research 2020, 66(9): 2094-2112.
Lawrence, I., & Lin, K. A concordance correlation coefficient to evaluate reproducibility. Biometrics, 1989, 255-268.
Lin, H. Y., Li, C. F., Chen, T. Y., Hsieh, C. F., Wang, G., Wang, T., Hu, J. M., Climate‐based approach for modeling the distribution of montane forest vegetation in Taiwan. Applied vegetation science 202023(2), 239-253.‏
Moghbel Esfahani, F., Alavi, S. J., Hosseini, S. M., & Tabari Kochaksarai, M. Determining the habitat suitability of Quercus castaneifolia CA Mey In order to plan restoration using species distribution modeling. Forest Research and Development 20239(3), 419-436.
Moradi, G., Reviewing Richness of Woody Species in Northern Forests of Iran and Temperate Broadleaf Forests of Central Europe. Human & Environment 202119(2), 75-90. (In Persian)
Naseri Karimvand, S., Poursartip, L., Moradi, M., & Soosani, J. Dynamic Effects of climate variables (temperature and precipitation) on the annual diameter growth of Iranian oak (Quercus brantti Lindl). Forest Research and Development 20162(1), 63-71.
Newbold, T., Future effects of climate and land-use change on terrestrial vertebrate community diversity under different scenarios. Proceedings of the Royal Society B 2018, 285(1881), 20180792.
Nogués-Bravo, D., Ohlemüller, R., Batra, P., & Araújo, M. B., Climate predictors of late Quaternary extinctions. International Journal of Organic Evolution 2010, 64(8), 2442–2449.
Patiño, J., Collart, F., Vanderpoorten, A., Martin‐Esquivel, J. L., Naranjo‐Cigala, A., Mirolo, S., Karger, D. N., Spatial resolution impacts projected plant responses to climate change on topographically complex islands. Diversity and Distributions 202329(10), 1245-1262.
Pauca-Tanco, G. A., Arias-Enríquez, J. F., Quispe-Turpo, J. D. P., High-Resolution Bioclimatic Surfaces for Southern Peru: An Approach to Climate Reality for Biological Conservation. Journal of Climate 2023, 11(5), 96.
Pearman, P. B., Guisan, A., Broennimann, O., Randin, C. F., Niche dynamics in space and time. Trends in Ecology & Evolution 2008, 23(3), 149–158.
R Core Team., R: A Language and Environment for Statistical Computing_. R Foundation for Statistical Computing, Vienna, Austria. 2024, <https://www.R-project.org/>.
Rodríguez-Rey, M., Jiménez-Valverde, A., Differing sensitivity of species distribution modelling algorithms to climate data source. Ecological Informatics 202479, 102387.
Tavosi, M., Vafakhah, M., Moosavi, V., Assessing the accuracy of rainfall data from TRMM satellite in Taleghan watershed. Journal of Watershed Management Research 202213(25), 11-20. (In Persian)
Thuiller, W., Araujo, M. B., Lavorel, S., Do we need land-cover data to model species distributions in Europe?. Journal of Biogeography 2004, 31(3), 353–361.
Velazco, S.J.E., Rose, M.B., Andrade, A.F.A., Minoli, I., Franklin, J.  flexsdm: An R package for supporting a comprehensive and flexible species distribution modelling workflow.  Methods in Ecology and Evolution, 2022, 13(8) 1661-1669.
Wango, T. J., Musiega, D., Mundia, C. N., Assessing the suitability of the WorldClim dataset for ecological studies in Southern Kenya. Journal of Geographic Information System 2018, 10, 643-658.
Yosefzadeh, H., Tabari, M., Hosseinzadeh Colagar, A., Assadi, M., Sattarian, A., Zare, H. Variation in Leaf Morphology of Tilia spp. of in Hyrcanian forests. Taxonomy and Biosystematics 20102(3), 11-24. (In Persian)