تحلیل تغییرات در الگوی رویش بلوط ایرانی (Quercus brantii Lind.) براساس حلقه‌های سالانه در بوم‌سازگان جنگلی زاگرس

نوع مقاله : علمی - پژوهشی

نویسندگان

1 دانشجوی دکتری، گروه علوم جنگل، دانشکده کشاورزی، دانشگاه ایلام، ایلام، ایران

2 استاد، گروه علوم جنگل، دانشکده کشاورزی، دانشگاه ایلام، ایلام، ایران

3 دانشیار پژوهش، مؤسسه تحقیقات جنگل‌ها و مراتع کشور، سازمان تحقیقات، آموزش و ترویج کشاورزی، تهران، ایران

4 استاد، گروه جنگلداری، دانشکده منابع طبیعی، دانشگاه علوم کشاورزی و منابع طبیعی ساری، مازندران، ایران

5 استادیار، گروه مرتع و آبخیزداری، دانشکده کشاورزی، دانشگاه ایلام، ایلام، ایران

چکیده

مقدمه و هدف: آشفتگی­ها به­عنوان مهم­ترین عوامل تغییر بوم­سازگان­های طبیعی، ترکیب گونه‌ای، ساختار و عملکرد جنگل‌ها را به­شدت تحت تأثیر قرار می‌دهند. برای درک بهتر پاسخ درختان به این آشفتگی‌ها، پژوهشگران از ابزارهای مختلفی استفاده کرده‌اند. گاه‌شناسی درختی به‌ دلیل ارائه یک چشم‌انداز بلندمدت، از ابزار­های اساسی برای بررسی تاریخچۀ این آشفتگی­ها است. در حقیقت، حلقه‌های رویشی داده­های ارزشمندی را از روند رشد درختان ارائه می­دهند که این داده­ها نقش مهمی در درک پویایی جنگل‌ خواهند داشت. استفاده از گاه­شناسی درختی به‌ویژه برای گونه‌هایی مانند بلوط ایرانی که مرز حلقه­های سالانه در این درختان به­خوبی مشخص است، روش قابل اطمینانی می­باشد. با شناسایی تغییرات رشد یا همان افزایش ناگهانی رشد شعاعی درختان می­توان آشفتگی­ها را شناسایی کرد. در این بررسی، تغییرات رشد در حلقه‌های سالانه درختان بلوط ایرانی (Quercus brantii Lindl.) در جنگل‌های زاگرس مورد تحلیل قرار گرفت تا تاریخچۀ آشفتگی‌ها بازسازی شود.
مواد و روش‌ها: این پژوهش در رویشگاه مله­پنجاب و در فاصلۀ 25 کیلومتری از شهرستان ایلام انجام شد. برای انجام این بررسی، تعداد 15 اصله درخت بادافتاده مورد نمونه‌برداری قرار گرفت. نمونه­برداری به­صورت برش­های عرضی ساقه و با استفاده از اره­موتوری انجام گرفت. پس از آماده­سازی نمونه­ها، با استفاده از دوربین عکاسی تصاویری از این نمونه­ها تهیه شد. سپس این تصاویر به محیط نرم­افزارCooRecorder  انتقال یافت و پهنای حلقه‌های سالانه در دو جهت مورد اندازه­گیری قرار گرفت. در ادامه، برای تطابق زمانی نمونه­ها، استانداردسازی برای حذف روندهای غیراقلیمی از سری­های رویشی و ایجاد گاه­شناسی، بستۀ نرم­افزاری dplR در محیط نرم­افزار R مورد استفاده قرار گرفت. در نهایت، تغییرات در الگوی رویش درختان با استفاده از متداول­ترین روش یعنی محاسبۀ درصد تغییرات رشد برای هر سری از حلقه­های رویشی و با استفاده از بستۀ نرم‌افزاری TRADER درمحیط R  مورد تجزیه و تحلیل قرار گرفت. برای شناسایی تغییرات رشد، درصد افزایش رشد در 10سال قبل از سال معین با 10 سال بعد مقایسه شد.
یافته‌ها: تجزیه و تحلیل 30 سری رویشی حاصل از 15 درخت نمونه‌برداری­شده، نشان داد که میانگین طول سری‌ها 16/48 سال است. گاه‌شناسی استاندارد به‌دست­آمده، دورۀ زمانی 72 ساله (2022-1951) را پوشش داد که شاخص­های آماری کلیدی آن شامل میانگین حساسیت 32/0 و سیگنال تجمعی بالا (معادل 88/0)0 بود که نشان‌دهندۀ سیگنال اقلیمی قوی و همچنین نمونه‌برداری کافی است. با استفاده از بستۀ نرم‌افزاری TRADER و روش میانگین­گیری رشد شعاعی، در مجموع 15 تغییر ناگهانی رشد شناسایی شد که شامل شش تغییر اصلی (افزایش رشد بیش از 50 درصد) و نه تغییر حدواسط (افزایش رشد بیش از 25 درصد) بود. قابل توجه است که 60 درصد از این تغییرات در بازۀ زمانی 2010-1990 رخ داده است، یعنی دوره­ای با خشکسالی‌های مکرر و افزایش فراوانی آتش‌سوزی در منطقه که نشان‌دهندۀ فاصلۀ متمرکز آشفتگی در جنگل است.
نتیجه‌گیری: نتایج این بررسی نشان داد که وقایع اقلیمی (به­ویژه خشکسالی­های مکرر) و آشفتگی‌های انسانی (آتش‌سوزی) و زیستی (شیوع آفات) به­عنوان عوامل کلیدی تغییر الگوی رشد درختان بلوط عمل کرده­اند. با توجه به تشدید این عوامل در دهه­های اخیر، انتظار می‌رود که جنگل­های زاگرس شاهد تغییرات ساختاری بلندمدت (کاهش تراکم، تغییر ترکیب گونه) در آینده باشند. این بررسی لزوم اجرای مدیریت تطبیقی شامل: 1. پایش مستمر آشفتگی­ها با استفاده از گاه­شناسی، 2. توسعۀ برنامه­های احیای جنگل­های آسیب­دیده و 3. کنترل عوامل انسانی تشدیدکنندۀ تنش را برجسته می­سازد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Diversity, composition and occurrence probability of tree-related microhabitats in the decay developmental stage of Hyrcanian intact beech forests (Sika and Shafarood regions)

نویسندگان [English]

  • Elham Motaharfard 1
  • Ali Mahdavi 2
  • Reza Akhavan 3
  • asghar Fallah 4
  • Reza Omidipur 5
1 Ph.D. Student of Forest Sciences, Department of Forest Sciences, Faculty of Agriculture and Natural Resources, Ilam University, Ilam, I. R. Iran
2 Professor, Department of Forest Sciences, Faculty of Agriculture and Natural Resources, Ilam University, Ilam, I. R. Iran
3 Associate Professor, Research Institute of Forests and Rangelands, Agricultural Research Education and Extension Organization (AREEO), Tehran, I. R. Iran
4 Professor, Sari Agriculture Sciences and Natural Resource University, Sari, Mazandaran, I. R. Iran
5 Assistant Prof., Department of Rangeland and Watershed Management, Faculty of Agriculture, Ilam University, Ilam, I. R. Iran
چکیده [English]

Background and Objective: In recent years, tree-related microhabitats have received increasing attention as a key component in the conservation of forest biodiversity. These microhabitats, which develop as morphological features on living trees or standing deadwood, play an essential role in providing habitat for a wide range of organisms and in maintaining forest ecological functions. Their formation is primarily driven by natural processes such as fungal activity, woodpecker excavation, and physical damage, and by increasing structural complexity they enhance overall forest habitat suitability. Consequently, the conservation of habitat trees is a fundamental element of sustainable forest management. The aim of this study was to investigate the diversity, composition, and occurrence probability of tree-related microhabitats at the degradation developmental stage of beech forests in northern Iran.
Material and Methods: This study was conducted in two one-hectare plots representing the degradation developmental stage in beech forests of the Shafaroud area in Gilan Province and the Sika area in eastern Mazandaran Province. Both plots are under the supervision of the Research Institute of Forests and Rangelands of Iran and are located within unmanaged, unharvested stands (control plots). In each plot, topographic variables including slope and aspect were measured using a clinometer and compass, and all trees were inventoried by species and diameter at breast height (DBH). Tree-related microhabitats were identified and recorded using a standardized microhabitat typology comprising seven main forms, 15 groups, and 47 microhabitat types. All living trees and standing dead trees were systematically surveyed, from the root collar to the crown, first with the naked eye and subsequently—particularly for elevated and sun-exposed parts—using binoculars. All observed microhabitats were recorded for each tree using unique codes. Logistic regression was applied to analyze the occurrence probability of different microhabitat types, while microhabitat diversity was compared using Hill numbers and rarefaction–extrapolation curves after standardization for sample size.
Results: The results indicated that Oriental beech was the dominant species in both study areas, accounting for 86.5% of the trees in Sika and 88.8% in Shafaroud. The mean DBH of beech trees differed significantly between the two sites; however, no significant difference was observed in the number of microhabitats per beech tree. A total of 455 tree-related microhabitats were recorded on beech trees in Sika and 442 in Shafaroud, corresponding to an average of 2.4 and 2.1 microhabitats per beech tree, respectively. In both areas, basal cavities represented the most frequent microhabitat form. Regarding microhabitat types, mosses, trunk rot cavities, and basal cavities were the most abundant, with 174, 146, and 118 records, respectively. The probability of occurrence of mosses was significantly higher in Shafaroud than in Sika, whereas no significant difference was found between the two areas for trunk rot cavities. For trees with a DBH of less than 50 cm, the probability of basal cavity occurrence was higher in Shafaroud, while no significant differences were detected at larger diameter classes. Comparison of overall microhabitat diversity revealed no significant difference between the two sites; however, diversity indices indicated that the diversity of common microhabitats (q = 1) in Sika was approximately twice, and the diversity of dominant microhabitats (q = 2) nearly three times, that of Shafaroud. These findings underscore the importance of considering microhabitat structure in the management and conservation of beech forests in northern Iran.
Conclusion: This study highlights the critical role of tree-related microhabitats in sustaining biodiversity in Hyrcanian forests. By improving our understanding of the relationships between forest structure and tree-related microhabitats, more effective conservation and management strategies can be developed. Based on the results, the Sika site shows considerable potential as a model area for biodiversity conservation. Finally, long-term investigations of tree-related microhabitats are recommended to achieve a comprehensive understanding of ecological processes and their impacts on biodiversity. Further research is also needed to examine the relationships between environmental conditions, forest structure, and tree-related microhabitats in order to provide a more robust scientific basis for conservation planning.

کلیدواژه‌ها [English]

  • Biodiversity
  • Structural feature
  • Deadwood
  • Control forest
  • Conservation strategy
  • Guilan
  • Mazandaran
Ahmadi, H.; Azizzadeh, J., The impacts of climate change based on regional and global climate models (RCMs and GCMs) projections (case study: Ilam province). Modeling Earth Systems and Environment 2022.
Altman, J.; Fibich, P.; Dolezal, J.; Aakala, T., TRADER: a package for tree ring analysis of disturbance events in R. Dendrochronologia 2014, 32, 107–112.
Amoroso, M. M.; Daniels, L.; Baker, P. J.; Camarero, J. J., Dendroecology: Tree-Ring Analyses Applied to Ecological Studies. Springer International Publishing 2017.
Arsalani, M., Reconstruction of Precipitation and Temperature Variations Using Oak Tree Rings in Central Zagros, Iran. 2012. Faculty of Geography, University of Tehran, Iran Unpublished M.A. Thesis.
Arsalani, M.; Pourtahamsi, K.; Azizi, Gh.; Bräuning, A.; Mohammadi, H., Tree-ring based December–February precipitation reconstruction in the southern Zagros Mountains, Iran. Dendrochronologia 2018, 49, 45–56.
Beygi Heidarlou, H.; Karamat Mirshkarlou, A., Understanding the effects of climate change on wildfires in the Iranian Northern Zagros Forests. Forest Research and Development 2024, 10(3).
Biondi, F.; Qeadan, F., Inequality in paleorecords. Ecology 2008, 89(4): 1056–1067.
Black, B. A.; Abrams, M. D., Use of boundary-line growth pattens as a basis for dendroecological release criteria. Ecological Applications 2003, 13(6), 2003, pp. 1733–1749.
Bretfeld, M.; Doerner, J. P.; Franklin, S. B., Radial growth response and vegetative sprouting of aspen following release from competition due to insect-induced conifer mortality. Forest Ecology and Management 2015, 347 (2015) 96–106.
Bunn, A. G., A dendrochronology program library in R (dplR). Dendrochronologia 2008, 26, 115–124.
Bunn, A. G., Statistical and visual crossdating in R using the dplR library. Dendrochronologia 2010, 28 (2010) 251–258.
Camarero, J. J.; Rubio-Cuadrado, A., Relating climate, drought and radial growth in broadleaf Mediterranean tree and shrub species: A new approach to quantify climate-growth relationships. Forests 2020, 11: 1250.
de Wergifosse, l., Simulating tree growth response to climate change in structurally-complex oak and beech stands across Europe. 2021. Doctoral dissertation. Louvain-La-Neuve. 188p.
Douglass, A. E., Crossdating in Dendrochronology. Journal of Forestry 1940, 825-831.
Ebrahimi, S. S.; Pourbabaei, H.; Pourtahmasi, K., Comparison of natural regeneration and radial growth variations of trees in the harvested and unharvested beech stands, Case study: Asalem forest. Iranian Journal of Forest 2019, 11(2): 221-238. (In Persian)
Esmaili, A.; Mousavi Mirkala, S. R.; Alijanpour, A.; Hajarian, M.; Ghanbari, S., Investigation the quantitative and qualitative characteristics of Persian oak and estimating its fruit in Sardasht. Forest Research and Development 2023, 9(3): 365-379.
Fonti, P.; von Arx, G.; Garcia-Gonzalez, I.; Eilmann, B.; Sass-Klaassen, U.; Gartner, H.; Eckstein, D., Studying global change through investigation of the plastic responses of xylem anatomy in tree rings. New Phytologist 2010, 185 (1): 42–53.
Fraver, Sh.; White, A. S., Identifying growth releases in dendrochronological studies of forest disturbance. Canadian Journal of Forest Research 2005, 35: 1648–1656 (2005)
Frelich, L. E. Forest Dynamics and Disturbance Regimes: Studies from Temperate Evergreen-deciduous Forests. Cambridge University Press, New York, 2002.
Fritts, H.; Swetnam, T, Dendroecology: a tool for evaluating variations in past and present forest environments. Advances in Ecological Research 1989, 19, 111.
Gentilesca, T.; Camarero, J. J.; Colangelo, M.; Nole, A.; Ripullone, F., Drought-induced oak decline in the western Mediterranean region: an overview on current evidences, mechanisms and management options to improve forest resilience. iforest, Biogeosciences and Forestry 2017, 10 (5): 796.
Haidarian Aghakhani, M.;  Tamartash, R.;  Jafarian, Z.;  Tarkesh Esfahani, M.; Tatian, M. R., Predicting the impacts of climate change on Persian oak (Quercus brantii) using Species Distribution Modelling in Central Zagros for conservation planning. Journal of Environmental Studies 2017, 43(3): 497-511. (In Persian)
Hosseini, A.; Hosseini, S. M.; Linares, J. C., Site factors and stand conditions associated with Persian oak decline in Zagros mountain forests. Forest Systems 2017, 26 (3), e014, 13 pages. 
Jozeyan, A.; Vafaei Shoushtari, R.; Askari, H., The survey of oak wood borer beetles and natural enemeis in the forest of Ilam Province. Iranian Journal of Forests and Rangelands Protection Research 2017, 14(2): 107-121. (In Persian)
Larsson, L.; Larsson P., CooRecorder/CDendro package version 9.3.1. Cybis, Saltsj¨obaden, Sweden, 2018.
Nabuurs, G. J.; Delacote, Ph.; Ellison, D.; Hanewinkel, M.; Hetemaki, L.; Lindner, M., By 2050 the mitigation effects of EU forests could nearly double through climate smart forestry. Forests 2017, 8, 1–14.
Nagel, Th. A.; Cerioni, M., Structure and dynamics of old‑growth Pinus nigra stands in Southeast Europe. European Journal of Forest Research 2023, 142:537–545.
Nasseri Karimvand1, S.; Poursartip, L.; M. Moradi, M.; Soosani, J., Dynamic Effects of climate variables (temperature and precipitation) on the annual diameter growth of Iranian oak (Quercus brantti Lindl). Forest Research and Development 2016, 2(1).
Nowacki, G. J.; Abrams, M. D., Radial-growth averaging criteria for reconstructing disturbance histories from presettlement-origin oaks. Ecological Monographs 1997, 67(2), 225–249.
Polat, S., Ghasemi Aghbash, F.; Mahdavi, A., Forest fire hazard zone mapping in Ilam county forests. Journal of Forest Research and Development 2020, 6(1): 135-152. (In Persian)
R Core Team, R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. 2024.
Rinaldi, B. N.; Maxwell, R. S.; Callahan, Th. M.; Brice, R. L.; Heeter, K. J.; Harley, G. L., Climate and ecological disturbance analysis of Engelmann spruce and Douglas fir in the greater Yellowstone ecosystem. Trees, Forests and People 2021, 3 (2021) 100053.
Romagnoli, M.; Moroni, S.; Recanatesi, F.; Salvati, R.; Mugnozza, G. S., Climate factors and oak decline based on tree-ring analysis. A case study of peri-urban forest in the Mediterranean area. Urban Forestry & Urban Greening 2018, 34: 17–28. 
Rybnícek, M.; Cermak, P.; Prokop, O.; Zid, T.; Trnka, M.; Kolar, T., Oak (Quercus spp.) response to climate differs more among sites than among species in central Czech Republic. Dendrobiology 2016, 75: 55–65.
Safari, E.; Moradi, H.; Seim, A.; Yousefpour, R.; Mirzakhani, M.; Tegel, W.; Soosani, J.; Kahle, H. P., Regional Drought Conditions Control Quercus brantii Lindl. 2022. Growth within Contrasting Forest Stands in the Central Zagros Mountains, Iran. Forests, 13, 495.
Sagheb Talebi, Kh.; Sajedi, T.; Pourhashemi, M., Forests of Iran: A Treasure from the Past, A Hope for the Future. Springer 2014, New York, 152.
Sanjabi, E., Estimation of Tree Density of Zagros Woodlands Usnig OLI Sensor of Landsat 8 Data (Case Study: Melapanjab Forest in Ilam). 2017. M.Sc. Thesis. Ilam University. (In Persian)
Speer, J. H., Fundamentals of Tree-ring Research. University of Arizona Press. 2010.
Walker, A. P.; De Kauwe, M. G.; Bastos, A.; Belmecheri, S.; Katerina Georgiou, K.; Keeling, R.; McMahon, S.; Medlyn, B.; Moore, D.; Norby, R.; Zaehle, S.; Anderson-Teixeira, K.; Battipaglia, G.; Brienen, R.; Cabugao, K.; Cailleret, R. M.; Campbell, E.; Canadell, J.; Ciais, Ph.; Craig, M, et al, Integrating the evidence for a terrestrial carbon sink caused by increasing atmospheric CO2. New Phytologist 2021, 229(5), 2413–2445.
Wigley, T. M. L.; Briffa, K. R.; Jones, P. D., On the average value of correlated time series, with applications in dendroclimatology and hyrometeorology. American Meteorological Society 1984, 23, 201–213.
Zarean, H.; Yazdanpanah, H.; Movahedi, S.; Jalilvand, H.; Momeni, M., Reconstructing over a century of annual temperature of Quercus Persica ‎tree rings in Zagros Forests (Case Study of Dena Region). Geographic Research 2017, 30 (1) :153-166.