مدلسازی پراکنش گونه‌ای شمشاد هیرکانی (Buxus Hyrcana Pojark) با بهره‌گیری از مدل جنگل تصادفی در جنگل‌های شمال ایران

نوع مقاله : علمی - پژوهشی

نویسندگان

1 دانشجوی دکتری علوم و مهندسی جنگل، گرایش مدیریت جنگل، دانشکده منابع طبیعی و علوم دریایی، دانشگاه تربیت مدرس، نور، مازندران، ایران.

2 دانشیار گروه علوم و مهندسی جنگل، دانشکده منابع طبیعی و علوم دریایی، دانشگاه تربیت مدرس، نور، مازندران، ایران

3 دانشیار گروه علوم و مهندسی جنگل، دانشکده منابع طبیعی و علوم دریایی، دانشگاه تربیت مدرس، نور، مازندران، ایران.

چکیده

مقدمه و هدف: ثبات و پایداری بوم­سازگان­ها نیازمند شناخت روابط بین پراکنش گونه­های گیاهی و عوامل محیطی است. تکنیک‌های مدلسازی پراکنش گونه‌ها به­عنوان ابزار قدرتمندی برای حمایت از استراتژی­های مدیریت جنگل در زمینه تغییرات اقلیمی شناخته می­شوند. شمشاد گونه­ای بردبار به سایه بوده و در زیر آشکوب جنگل­های جلگه‌ای و میان‌بند شمال ایران پراکنش دارد که با ایجاد تاج‌پوشش انبوه و فشرده، محیطی تاریک در جنگل ایجاد می­کند. به دلیل تخریب گسترده رویشگاه­های شمشاد در دهه­های اخیر، این گونه جزء جوامع ذخیره­گاهی درنظر گرفته شده است تا از انقراض آن جلوگیری شود. هدف اصلی این پژوهش مدلسازی پراکنش این گونه در جنگل­های هیرکانی است.
مواد و روش‌ها: در این بررسی، با استفاده از 570 نقطه حضور واقعی شمشاد در جنگل‌های هیرکانی، پراکنش این گونه مدلسازی شد. متغیرهای زیست‌اقلیمی از پایگاه WorldClim و متغیرهای توپوگرافی از مدل رقومی ارتفاع استخراج شدند. برای کاهش هم‌خطی، از آزمون VIF استفاده شد. 70 درصد نمونه­ها به­عنوان داده­های آموزشی برای توسعه مدل و30 درصد باقی­مانده به­عنوان داده­های آزمون برای اعتبارسنجی مدل اختصاص داده شدند. مدلسازی با الگوریتم جنگل تصادفی در محیط R و با بهره‌گیری از داده‌های حضور و شبه غیاب، تنظیم شاخص­های مدل (500 درخت، 2=mtry، 5=min_n) و اعتبارسنجی متقابل آن با روش (10 fold Cross-Validation) انجام شد. عملکرد مدل با شاخص‌های AUC، TSS، دقت کلی و ضریب کاپا ارزیابی شد.
یافته‌ها: نتایج حاصل از مدل جنگل تصادفی نشان داد که مدل از دقت بالایی در پیش‌بینی پراکنش شمشاد برخوردار است (98/0=AUC، 95/0= Accuracy ، 72/0= Kappa ، 63/0=TSS). مدل جنگل تصادفی با استفاده از متغیرهای زیست‌اقلیمی و توپوگرافی، عملکرد بسیار مطلوبی در پیش‌بینی پراکنش شمشاد هیرکانی داشت. ارزیابی اهمیت متغیرها نشان داد که متغیرهای زیست‌اقلیمی bio3 (هم­دمایی)، bio12 (بارندگی سالانه)، bio8 (میانگین دما در فصل مرطوب) و bio1 (میانگین دمای سالانه)  بیشترین تأثیر را در پراکنش گونه شمشاد داشتند. منحنی پاسخ گونه شمشاد نسبت به چهار متغیر مهم نیز رسم شد. نقشه مطلوبیت زیستگاه شمشاد، مناطق با شرایط بوم­شناختی مناسب را مشخص کرد که بخش‌های گسترده‌ای از استان مازندران و نواحی مرزی جنگل‌های هیرکانی را شامل می‌شود.
نتیجه‌گیری: تحلیل اهمیت متغیرها نشان داد که هم‌دمایی (Bio3) به‌عنوان مؤثرترین متغیر، نشان‌دهنده نقش ثبات دمایی در زیست‌پذیری شمشاد است؛ گونه‌ای همیشه‌سبز و سایه‌پسند که در برابر نوسانات دمایی حساس است و در مناطق با دامنه دمایی متعادل (۱۵–۲۰ درجه) حضور بیشتری دارد. بارندگی سالانه (Bio12) نیز اهمیت بالایی داشت و منحنی پاسخ نشان داد احتمال حضور شمشاد در نواحی با بارندگی بیش از 300 میلی‌متر به‌مراتب بیشتر است؛ زیرا رطوبت کافی برای رشد، فتوسنتز و کاهش تنش آبی فراهم می‌سازد. متغیر Bio8 (میانگین دما در فصل مرطوب) با تأثیرگذاری بر رشد رویشی و مقاومت به بیماری‌های قارچی، در بازه دمایی حدود پنج تا ۱۰ درجه شرایط بهینه برای این گونه فراهم می‌کند. همچنین Bio1 (میانگین دمای سالانه) نشان داد که شمشاد بیشتر در مناطقی با اقلیم معتدل و دمای متوسط سالانه بین هشت تا ۱۳ درجه پراکنش دارد. در مقابل، متغیرهای توپوگرافی مثل طول شیب و تابش خورشیدی نقش مکمل داشته و در سطوح محلی شرایط میکروکلیمایی را تعدیل می‌کنند. نقشه مطلوبیت رویشگاه نیز نشان داد که مناطق میانی و غربی جنگل‌های هیرکانی، به‌ویژه در استان‌های مازندران و گیلان، دارای بالاترین احتمال حضور گونه هستند. همچنین در برخی نواحی استان گلستان نیز مطلوبیت متوسط تا بالایی پیش‌بینی شد که قابلیت بالقوه برای احیای شمشاد در این مناطق را نشان می‌دهد. این نتایج نقش کلیدی اقلیم، به‌ویژه ترکیب دما و رطوبت، را در تبیین پراکنش شمشاد تأیید کرده و بر لزوم حفاظت از زیستگاه‌های با شرایط اقلیمی پایدار تأکید می­کند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Species distribution modeling of Hyrcanian boxwood (Buxus Hyrcana Pojark) using the random forest model in the forests of northern Iran

نویسندگان [English]

  • Aref Hesabi 1
  • Seyed Jalil Alavi 2
  • Omid Esmailzadeh 3
1 PhD Student of Forest Management, Department of Forest Science, Faculty of Natural Resources and marine science, Tarbiat Modares University, Nur, Mazandaran, I. R. Iran
2 Associate Professor, Department of Forest Science, Faculty of Natural Resources and marine science, Tarbiat Modares University, Nur, Mazandaran, I. R. Iran
3 Associate Professor, Department of Forest Sciences and Engineering, Faculty of Natural Resources and Marine Sciences, Tarbiat Modares University, Nur, Mazandaran, I. R. Iran
چکیده [English]

Background and Objective: The stability and sustainability of ecosystems require understanding the relationships between the distribution of plant species and environmental factors. Species distribution modeling techniques are recognized as powerful tools to support forest management strategies in the context of climate change. Boxwood is a shade-tolerant species that is distributed in the understory of lowland and middle-altitude forests of northern Iran, where it creates a dark environment in the forest by forming a dense canopy. Due to the widespread destruction of boxwood habitats in recent decades, this species has been considered part of conservation communities to prevent its extinction. The main objective of this research is to model the distribution of this species in the Hyrcanian forests.
Material and Methods: In this study, the distribution of boxwood was modeled using 570 actual occurrence points in Hyrcanian forests. Bioclimatic variables were extracted from the WorldClim database and topographic variables from the digital elevation model. VIF test was used to reduce collinearity. 70% of the samples were assigned as training data for model development and the remaining 30% as test data for model validation. Modeling was performed using the random forest algorithm in R environment and using presence and pseudo-absence data, adjusting the model parameters (500 trees, mtry=2, min_n=5) and validating it by using the 10-fold Cross-Validation method. Model performance was evaluated with AUC, TSS, overall accuracy, and kappa coefficient.
Results: The results of the Random Forest model showed that the model has high accuracy in predicting the distribution of boxwood (AUC=0.98, Accuracy=0.95, Kappa=0.72, TSS=0.63). The random forest model, using bioclimatic and topographic variables, showed very favorable performance in predicting the distribution of Hyrcanian boxwood. Evaluation of variable importance indicated that the bioclimatic variables bio3 (isothermality), bio12 (annual precipitation), bio8 (mean temperature of the wettest quarter) and bio1 (annual mean temperature) had the greatest impact on the distribution of the boxwood species. The response curve of boxwood to the four important variables was also plotted. The boxwood habitat suitability map identified areas with suitable ecological conditions, including large parts of Mazandaran province and the border areas of the Hyrcanian forests.
Conclusion: Analysis of variable importance showed that isothermality (Bio3) was the most effective variable, indicating the role of thermal stability in the viability of boxwood; an evergreen and shade-loving species that is sensitive to temperature fluctuations and is more present in areas with a balanced temperature range (15–20 degrees). Annual precipitation (Bio12) was also of high importance, and the response curve showed that the probability of boxwood presence is much higher in areas with precipitation above 300 mm; because it provides sufficient moisture for growth, photosynthesis, and reduction of water stress. Variable Bio8 (mean temperature of the wettest quarter) by affecting vegetative growth and resistance to fungal diseases, provides optimal conditions for this species in the temperature range of about 5 to 10 degrees. Also, Bio1 (annual mean temperature) showed that boxwood is more distributed in areas with temperate climates and an average annual temperature between 8 and 13 degrees. In contrast, topographic variables such as slope length and solar radiation played a complementary role and moderated microclimatic conditions at the local level. The habitat suitability map also showed that the central and western regions of the Hyrcanian forests, especially in the provinces of Mazandaran and Gilan, have the highest probability of species presence. Also, in some areas of Golestan province, medium to high suitability was predicted, which shows the potential for boxwood restoration in these areas. These results confirm the key role of climate, especially the combination of temperature and humidity, in explaining the distribution of boxwood and emphasize the need to protect habitats with stable climatic conditions.

کلیدواژه‌ها [English]

  • Bioclimatic variable
  • Habitat suitability
  • Machine learning
  • Worldclim database
Aertsen, W., Kint, V., van Orshoven, J., Özkan, K., & Muys, B. Comparison and ranking of different modelling techniques for prediction of site index in Mediterranean mountain forests. Ecological Modelling, 2010, 221(8).
Ahmadi, K., Hosseini, S. M., Tabari, M., & Nouri, Z. Modeling the potential habitat of English yew (Taxus baccata L.) in the Hyrcanian forests of Iran. Forest Research and Development 20195(4), 513-525. (In Persian)
Alavi, S. J., Ahmadi, K., Hosseini, S. M., Tabari, M., Nouri, Z. The importance of climatic, topographic, and edaphic variables in the distribution of yew species (Taxus baccata L.) and prioritization of areas for conservation and restoration in the north of Iran. Iranian Journal of Forest, 2020, 11(4), 477–492. (In Persian)
Ahmadi, K., Mahmoodi, S., Pal, S. C., Saha, A., Chowdhuri, I., Nguyen, T. T., Jarvie, S., Szostak, M., Socha, J., & Thai, V. N. (). Improving species distribution models for dominant trees in climate data-poor forests using high-resolution remote sensing. Ecological Modelling, 2023, 475.
Asadi, H., Jalilvand, H., Tafazoli, M. and Hosseini, S. Modeling Suitable Habitats of Parrotia persica (DC.) C.A.Mey. in the Hyrcanian Forests Using Environmental Factors. Iranian Journal of Forest and Poplar Research2025, 33(1), 50-68. (In Persian)
Akrim, F., Mahmood, T., Hussain, R., Qasim, S., & Zangi, I.  D. Distribution pattern, population estimation and threats to the Indian Pangolin Manis crassicaudata (Mammalia: Pholidota: Manidae) in and around Pir Lasura National Park, Azad Jammu & Kashmir, Pakistan. Journal of Threatened Taxa, 2017, 9(3).
Alipour, S., & Walas, Ł. The influence of climate and population density on Buxus hyrcana potential distribution and habitat connectivity. Journal of Plant Research, 2023, 136(4).
Allouche, O., Tsoar, A., & Kadmon, R. Assessing the accuracy of species distribution models: Prevalence, kappa and the true skill statistic (TSS). Journal of Applied Ecology, 2006, 43(6).
Amindin, A., Pourghasemi, H. R., Safaeian, R., Rahmanian, S., Tiefenbacher, J. P., & Naimi, B. Predicting Current and Future Habitat Suitability of an Endemic Species Using Data-Fusion Approach: Responses to Climate Change. Rangeland Ecology & Management, 2024, 94, 149–162.
Barbet-Massin, M., Jiguet, F., Albert, C. H., & Thuiller, W. Selecting pseudo-absences for species distribution models: how, where and how many? Methods in Ecology and Evolution, 2012, 3(2), 327–338.
Becklin, K. M., Anderson, J. T., Gerhart, L. M., Wadgymar, S. M., Wessinger, C. A., & Ward, J. K. Examining plant physiological responses to climate change through an evolutionary lens. Plant Physiology, 2016, 172(2).
Burns, P. A., Clemann, N., & White, M. Testing the utility of species distribution modelling using Random Forests for a species in decline. Austral Ecology, 2020, 45(6).
Cutler, D. R., Edwards, T. C., Beard, K. H., Cutler, A., Hess, K. T., Gibson, J., & Lawler, J. J. Random forests for classification in ecology. Ecology, 2007, 88(11).
Dormann, C. F., Elith, J., Bacher, S., Buchmann, C., Carl, G., Carré, G., Marquéz, J. R. G., Gruber, B., Lafourcade, B., Leitão, P. J., Münkemüller, T., Mcclean, C., Osborne, P. E., Reineking, B., Schröder, B., Skidmore, A. K., Zurell, D., & Lautenbach, S. Collinearity: A review of methods to deal with it and a simulation study evaluating their performance. Ecography, 2013, 36(1).
Edrisnia, S., Etemadi, M., & Pourghasemi, H. R. Machine learning-driven habitat suitability modeling of Suaeda aegyptiaca for sustainable industrial cultivation in saline regions. Industrial Crops and Products, 2025, 225, 120427.
Elith, J., H. Graham, C., P. Anderson, R., Dudík, M., Ferrier, S., Guisan, A., J. Hijmans, R., Huettmann, F., R. Leathwick, J., Lehmann, A., Li, J., G. Lohmann, L., A. Loiselle, B., Manion, G., Moritz, C., Nakamura, M., Nakazawa, Y., McC. M. Overton, J., Townsend Peterson, A., … E. Zimmermann, N. Novel methods improve prediction of species’ distributions from occurrence data. Ecography, 2006, 29(2).
Elith, J., & Leathwick, J. R. Species distribution models: Ecological explanation and prediction across space and time. Annual Review of Ecology, Evolution, and Systematics, 2009, 40.
Esmailzadeh, O., & Soleymanipour, S. Habitat suitability and ecological requirements of Buxus hyrcana in the Hyrcanian forests. Iranian Journal of Forest and Poplar Research, 2015, 23(1), 45–58. (In Persian)
Fielding, A. H., & Bell, J. F. A review of methods for the assessment of prediction errors in conservation presence/absence models. Environmental Conservation, 1997, 24(1), 38–49. doi: 10.1017/S0376892997000088
Franklin, J. Species distribution models in conservation biogeography: Developments and challenges. In Diversity and Distributions, 2013, (Vol. 19, Issue 10).
Freeman, E. A., Moisen, G. G., Coulston, J. W., & Wilson, B. T. Random forests and stochastic gradient boosting for predicting tree canopy cover: Comparing tuning processes and model performance. Canadian Journal of Forest Research, 2015, 46(3).
Graham, C. H., Moritz, C., & Williams, S. E. Habitat history improves prediction of biodiversity in rainforest fauna. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(3).
Guisan, A., Edwards, T. C., & Hastie, T. Generalized linear and generalized additive models in studies of species distributions: Setting the scene. Ecological Modelling, 2002, 157(2–3).
Guisan, A., Tingley, R., Baumgartner, J. B., Naujokaitis-Lewis, I., Sutcliffe, P. R., Tulloch, A. I. T., Regan, T. J., Brotons, L., Mcdonald-Madden, E., Mantyka-Pringle, C., Martin, T. G., Rhodes, J. R., Maggini, R., Setterfield, S. A., Elith, J., Schwartz, M. W., Wintle, B. A., Broennimann, O., Austin, M., … Buckley, Y. M. Predicting species distributions for conservation decisions. Ecology Letters, 2013, 16(12).
Guo, C., Lek, S., Ye, S., Li, W., Liu, J., & Li, Z. Uncertainty in ensemble modelling of large-scale species distribution: Effects from species characteristics and model techniques. Ecological Modelling, 2015, 306.
Habibi kilak, S., Alavi, S. J., & Esmailzadeh, O. (2019). Analyzing the ecological niche of Buxus hyrcana Pojark in the northern forests of Iran. Forest and Wood Products, 72(1), 21–31. (In Persian)
Habibikilak, S., Alavi, S. J., & Esmailzadeh, O. Investigating the influence of different environmental variables in modeling the distribution of yew (Taxus baccata L.) using the MAXENT model in Hyrcanian forests. Forest Research and Development2025, 11(1), 25-39. (In Persian)
Haneczok, J., & Piskorski, J. Shallow and deep learning for event relatedness classification. Information Processing and Management, 2020, 57(6).
Hedayati Kaliji, S., Hosseini, S. M., Alavi, S. J., and Amiri, M. Current and future distribution modeling of oriental beech (Fagus orientalis Lipsky) in Hyrcanian forests. Forest Research and Development, 2025, 10(4), 527-543. (In Persian)
Hesabi, A., Alavi, S. J., & Esmailzadeh, O. Evaluation of the accuracy of climatic data from the WorldClim and Chelsa databases in three northern provinces of Iran. Forest Research and Development2025, 11(1), 109-132. (In Persian)
Hijmans, R. J. Cross‐validation of species distribution models: removing spatial sorting bias and calibration with a null model. Ecology2012, 93(3), 679-688.
James, G., Witten, D., Hastie, T., & Tibshirani, R. An Introduction to Statistical Learning: With Applications in R (2nd ed.). Springer. 2021,
Jarvis, P. G., & Mcnaughton, K. G. Stomatal Control of Transpiration: Scaling Up from Leaf to Region. Advances in Ecological Research, 1986, 15(C).
Kaky, E., Nolan, V., Alatawi, A., & Gilbert, F. A comparison between Ensemble and MaxEnt species distribution modelling approaches for conservation: A case study with Egyptian medicinal plants. Ecological Informatics, 2020, 60.
Khabazi, F., Esmailzadeh, O., & Najafi, A. Supervised classification of Buxus hyrcana plant communities using artificial neural network. Iranian Journal of Forest, 2019, 11(3), 387–400. (In Persian)
Khaliq, I., Avenot, H. F., Baudoin, A., Coop, L., & Hong, C. Epidemiology of boxwood blight in western North Carolina and Virginia and evaluation of the boxwood blight infection risk model. Scientific Reports, 2024, 14(1), 26829.
Kougioumoutzis, K., Tsakiri, M., Kokkoris, I. P., Trigas, P., Iatrou, G., Lamari, F. N., Tzanoudakis, D., Koumoutsou, E., Dimopoulos, P., Strid, A., & Panitsa, M. Assessing the Vulnerability of Medicinal and Aromatic Plants to Climate and Land-Use Changes in a Mediterranean Biodiversity Hotspot. Land, 2024, 13(2).
Kuhn, M., & Wickham, H. Tidymodels: Easily install and load the 'Tidymodels' packages (R package version 0.1.3). 2020, Retrieved from https://CRAN.R-project.org/package=tidymodels.
Martínez-Meyer, E., Peterson, A. T., Servín, J. I., & Kiff, L. F. Ecological niche modelling and prioritizing areas for species reintroductions. ORYX, 2006, 40(4).
Merow, C., Smith, M. J., Edwards, T. C., Guisan, A., Mcmahon, S. M., Normand, S., Thuiller, W., Wüest, R. O., Zimmermann, N. E., & Elith, J. What do we gain from simplicity versus complexity in species distribution models? Ecography, 2014, 37(12).
Mi, C., Huettmann, F., Guo, Y., Han, X., & Wen, L. Why choose Random Forest to predict rare species distribution with few samples in large undersampled areas? Three Asian crane species models provide supporting evidence. PeerJ, 2017(1).
Moghbel Esfahani, F., Alavi, S. J., Hosseini, S. M., & Tabari Kochaksarai, M. Determining the habitat suitability of Quercus castaneifolia C. A. Mey In order to plan restoration using species distribution modeling. Forest Research and Development, 2023, 9(3), 419–436. (In Persian)
Moisen, G. G., & Frescino, T. S. Comparing five modelling techniques for predicting forest characteristics. Ecological Modelling, 2002, 157(2–3).
Moore, C. E., Meacham-Hensold, K., Lemonnier, P., Slattery, R. A., Benjamin, C., Bernacchi, C. J., Lawson, T., & Cavanagh, A. P. The effect of increasing temperature on crop photosynthesis: From enzymes to ecosystems. Journal of Experimental Botany, 2021, 72(8).
Naimi, B., Hamm, N. A. S., Groen, T. A., Skidmore, A. K., & Toxopeus, A. G. Where is positional uncertainty a problem for species distribution modelling? Ecography, 2014, 37(2).
Olden, J. D., Lawler, J. J., & Poff, N. L. Machine learning methods without tears: A primer for ecologists. In Quarterly Review of Biology 2008, (Vol. 83, Issue 2).
Phillips, S. J., & Dudík, M. Modeling of species distributions with Maxent: New extensions and a comprehensive evaluation. Ecography, 2008, 31(2).
Prasad, A. M., Iverson, L. R., & Liaw, A. Newer classification and regression tree techniques: Bagging and random forests for ecological prediction. Ecosystems, 2006, 9(2).
Probst, P., Wright, M. N., & Boulesteix, A. L. Hyperparameters and tuning strategies for random forest. In Wiley Interdisciplinary Reviews. Data Mining and Knowledge Discovery 2019, (Vol. 9, Issue 3).
R Core Team., R: A Language and Environment for Statistical Computing_. R Foundation for Statistical Computing, Vienna, Austria. 2024, <https://www.R-project.org/>.
Ren-Yan, D., Xiao-Quan, K., Min-Yi, H., Wei-Yi, F., & Zhi-Gao, W. The predictive performance and stability of six species distribution models. PLoS ONE, 2014, 9(11).
Roberts, D. R., Bahn, V., Ciuti, S., Boyce, M. S., Elith, J., Guillera-Arroita, G., Hauenstein, S., Lahoz-Monfort, J. J., Schröder, B., Thuiller, W., Warton, D. I., Wintle, B. A., Hartig, F., & Dormann, C. F. Cross-validation strategies for data with temporal, spatial, hierarchical, or phylogenetic structure. In Ecography 2017, (Vol. 40, Issue 8).
Rushton, S. P., Ormerod, S. J., & Kerby, G. New paradigms for modelling species distributions? In Journal of Applied Ecology 2004, (Vol. 41, Issue 2).
Safdar, S., Younes, I., Ahmad, A., & Sastry, S. A comprehensive review of spatial distribution modeling of plant species in mountainous environments: Implications for biodiversity conservation and climate change assessment. Kuwait Journal of Science, 2025, 52(1), 100337.
Sagheb Talebi, K., Sajedi, T., & Pourhashemi, M. Forests of Iran: A treasure from the past, a hope for the future 2014, (Vol. 10). Springer, Dordrecht.
Sękiewicz, K., Salvà-Catarineu, M., Walas, Ł., Romo, A., Gholizadeh, H., Naqinezhad, A., Farzaliyev, V., Mazur, M., & Boratyński, A. Consequence of habitat specificity: a rising risk of habitat loss for endemic and sub-endemic woody species under climate change in the Hyrcanian ecoregion. Regional Environmental Change, 2024, 24(2), 68.
Sillero, N., Arenas-Castro, S., Enriquez‐Urzelai, U., Vale, C. G., Sousa-Guedes, D., Martínez-Freiría, F., Real, R., & Barbosa, A. M. Want to model a species niche? A step-by-step guideline on correlative ecological niche modelling. Ecological Modelling, 2021, 456.
Sillero, N., Campos, J. C., Arenas-Castro, S., & Barbosa, A. M. A curated list of R packages for ecological niche modelling. In Ecological Modelling 2023, (Vol. 476).
Singh, H. C., Maurya, A., Wairokpam, B., Tiwari, V., Tiwari, A., & Rana, T. S. Predicting current and future suitable habitats for Bergenia ciliata in Indian Himalayan region. Landscape and Ecological Engineering, 2025, 1-14.
Sobhani, P., & Danehkar, A. Modeling the distribution of Avicennia marina (Forssk.) Vierh. in the Khamir and Qeshm mangrove forests, Iran using the maximum entropy model (MaxEnt). Iranian Journal of Forest and Poplar Research2024, 32(2), 97-111. (In Persian)
Soleymanipour, S., Esmailzadeh, O. Flora, life form and chorology of Box trees (Buxus hyrcana) habitats in forests of the Farim area of Sari. Taxonomy and Biosystematics 2015, 7, 39–56.
Velazco, S.J.E., Rose, M.B., Andrade, A.F.A., Minoli, I., Franklin, J.  flexsdm: An R package for supporting a comprehensive and flexible species distribution modelling workflow.  Methods in Ecology and Evolution, 2022, 13(8) 1661-1669.
Vignali, S., Barras, A. G., Arlettaz, R., & Braunisch, V. SDMtune: An R package to tune and evaluate species distribution models. Ecology and Evolution, 2020, 10(20).
Wani, Z., Khan, S., Satish, K., Haq, S., Pant, S., Siddiqui, S. Ensemble modelling reveals shrinkage of suitable habitat for Himalayan Boxwood (Buxus wallichiana Bail.) under climate change – implications for conservation. Phytocoenologia 2024, 52.
Wani, Z. A., Dar, J. A., Lone, A. N., Pant, S., & Siddiqui, S. Habitat suitability modelling and range change dynamics of Bergenia stracheyi under projected climate change scenarios. Frontiers in Ecology and Evolution, 2025, Volume 13-2025.
Zhang, L., Huettmann, F., Liu, S., Sun, P., Yu, Z., Zhang, X., & Mi, C. Classification and regression with random forests as a standard method for presence-only data SDMs: A future conservation example using China tree species. Ecological Informatics, 2019, 52.