Estimation of canopy and trunk ecohydrological parameters of Fagus orientalis and Picea abies stands (Siahkal, Gilan province)

Document Type : Scientific article

Authors

1 دانشیار، دانشکده کشاورزی و منابع‌طبیعی، دانشگاه محقق اردبیلی، اردبیل، ایران.

2 Ph.D. of Silviculture and Forest Ecology, Faculty of Natural Resources, University of Tehran, Karaj, I. R. Iran.

3 Assistant Prof., Department of Forestry, Faculty of Agriculture and Natural Resources, University of Tabriz, Ahar, I. R. Iran.

4 Associate Prof., Department of Water Engineering, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, I. R. Iran.

5 M.Sc. of Forestry, Forest, Rangeland and watershed management organization, Guilan, I. R. Iran

Abstract

The aims of the study were to estimate the canopy and trunk ecohydrological parameters of a Fagus orientalis natural stand and a Picea abies plantation in Siahkal (Gilan province) during one-year measurements. The results showed that the estimated canopy saturation point, canopy saturation point, canopy storage capacity, free throughfall coefficient, the ratio of mean evaporation rate from canopy to the mean rainfall intensity, trunk storage capacity, stemflow partitioning coefficient, and trunk saturation point were 1.81 mm, 1.63 mm, 0.44 mm, 0.57, 0.16, 0.21 mm, 0.13, and 1.61 mm in a F. orientalis stand, respectively. For the P. abies stand, the corresponding values were 3.19 mm, 1.87 mm. 0.94 mm, 0.34, 0.17, 0.19 mm, 0.07, and 2.74 mm. Based on the amounts of canopy and trunk ecohydrological parameters, it can be stated that rain water entering the forest in a F. orientalis stand is more than that in P. abies stand. Due to the time consuming and costly measurements of throughfall, stemflow, and rainfall interception, especially in Iran where there is no possibility of using automated systems, and also because the measurements have to be performed manually in the field after each rain storm, determination of the canopy and trunk ecohydrological parameters is an effective step for predicting throughfall, stemflow, and rainfall interception for each rain storm.

 

Keywords


- Abbasian, P., P. Attarod, S. M. M. Sadeghi, J. T. Van Stan & S. M. Hojjati, 2015. Throughfall nutrients in a degraded indigenous Fagus orientalis forest and a Picea abies plantation in North of Iran. Forest Systems, doi: 10.5424/fs/2015243-06764.
- Abbasian, P., P., Attarod, S. M. M. Sadeghi & V. Bayramzadeh, 2018. Application of regression-based methods for determining canopy ecohydrological characteristics of Picea abies stand in Kelardasht, Journal of Renewable Natural Resources Research, 9(1): 33-46. (In Persian)
- Ahmadi, M. T., P. Attarod, G. Zahedi Amiri, S. M. M. Sadeghi & S. M. Hojjati, 2016. Estimating canopy ecohydrological parameters of a Picea abies stand in the Caspian forests, North of Iran, Iranian Journal of Forest, 7(4): 459-469. (In Persian)
- Attarod, P., S.M.M. Sadeghi, T.G. Pypker, H. Bagheri, M. Bagheri & V. Bayramzadeh, 2015. Needle-leaved trees impacts on rainfall interception and canopy storage capacity in an arid environment, New Forests, 46: 339-355.
- Attarod, P., S. M. M. Sadeghi, T. G. Pypker & V. Bayramzadeh, 2017. Oak trees decline، a sign of climate variability impacts in the west of Iran, Caspian Journal of Environmental Sciences, 15(4): 373-384.
- Bonnesoeur, V., B. Locatelli, M. R. Guariguata, B. F. Ochoa-Tocachi, V. Vanacker, Z. Mao & S. L. Mathez-Stiefel, 2019. Impacts of forests and forestation on hydrological services in the Andes: A systematic review, Forest Ecology and Management, 433: 569-584.
- Bryant, M. L., S. Bhat & J. M. Jacobs, 2005. Measurements and modeling of throughfall variability for five forest communities in the southeastern US. Journal of Hydrology, 312(1-4): 95-108.
- Farokhzadeh, N., H. Ravanbakhs, A. Moshki & M. Mollashahi, 2018. The natural regeneration establishment and diversity of different 50-year-old plantation types in Sorkhe-Hesar Forest Park, Journal of Forest Research and Development, 4(1): 43-57. (In Persian)
- Fathizadeh, O., P. Attarod, T. G. Pypker, A. A. Darvishsefat & G. Zahedi Amiri, 2013. Seasonal variability of rainfall interception and canopy storage capacity measured under individual oak (Quercus brantii) trees in western Iran, Journal of Agricultural Science and Technology, 15: 175-188.
- Fathizadeh, O., S. M. Hosseini, A. Zimmermann, R. F. Keim & A. D. Boloorani, 2017. Estimating linkages between forest structural variables and rainfall interception parameters in semi-arid deciduous oak forest stands, Science of the Total Environment, 601: 1824-1837.
- Friesen, J., J. Lundquist & J. T. Van Stan, 2015. Evolution of forest precipitation water storage measurement methods, Hydrological Processes, 29(11): 2504-2520.
- Gash, J. H. C. & A. J. Morton, 1978. An application of the Rutter model to the estimation of the interception loss from the Thetford forest, Journal of Hydrology, 38: 89-105.
- Gash, J. H. C., C. R. Lloyd & G. Lachaud, 1995. Estimating sparse forest rainfall interception with an analytical model, Journal of Hydrology, 170: 79-86.
- Gash, J. H. C., I. R. Wright & C. R. Lloyd, 1980. Comparative estimates of interception loss from three coniferous forests in Great Britain, Journal of Hydrology, 48: 89-105.
- Ghimire, C. P., L. A. Bruijnzeel, M. W. Lubczynski & M. Bonell, 2012. Rainfall interception by natural and planted forests in the middle Mountains of Central Nepal, Journal of Hydrology, 475: 270-280.
- Hakimi, L., S. M. M. Sadeghi, J. T. Van Stan, T. G. Pypker & E. Khosropour, 2018. Management of pomegranate (Punica granatum) orchards alters the supply and pathway of rain water reaching soils in an arid agricultural landscape, Agriculture, Ecosystems and Environment, 259: 77-85.
- Joukar, Z., M. Moradi & R. Basiri, 2019. Distribution of rain fall in pure Tamarix arceuthoides stand in the riparian forests, Journal of Forest Research and Development, 4(4): 501-513. (In Persian)
- Levia, D. F. & E. E. Frost, 2003. A review and evaluation of stemflow literature in the hydrologic and biogeochemical cycles of forested and agricultural ecosystems, Journal of Hydrology, 274: 1-29.
- Levia, D. F. & S. Germer, 2015. A review of stemflow generation dynamics and stemflow‐environment interactions in forests and shrublands, Reviews of Geophysics, 53(3): 673-714.
- Licata, J. A., T. G. Pypker, M. Weigandt, M. H. Unsworth, J. E. Gyenge, M. E. Fernández, T. M. Schichter & B. J. Bond, 2011. Decreased rainfall interception balances increased transpiration in exotic ponderosa pine plantations compared with native cypress stands in Patagonia, Argentina, Ecohydrology, 4: 83-93.
- Link, T. E., M. Unsworth & D. Marks, 2004. The dynamics of rainfall interception by a seasonal temperate rainforest, Agricultural and Forest Meteorology, 124: 171-191.
- Marvi-Mohajer, M. R., 2011. Silviculture, Tehran University Press, Tehran, 387 pp. (In Persian)
- Mohammadi, S., R. Rahmani & R. Arabali, 2014. Measuring throughfall and interception loss in Horizontal cypress and Turkish pine afforestations and a natural stand of chestnut-leaved oak at Kohmian of Azadshahr, Iran, Iranian Journal of Forest, 6(3): 363-376. (In Persian)
- Muzylo, A., P. Llorens, F. Valente, J. J. Keizer, F. Domingo & J. H. C Gash, 2009. Review of rainfall interception modelling, Journal of Hydrology, 370: 191-206.
- Nezamdoost, H., K. Sefidi, A. Rasoulzadeh & S. M. M. Sadeghi, 2017. Quantifying throughfall, stemflow, and rainfall interception in a Fagus orientalis forest and a Picea abies plantation in Siahkal, Gilan, Iranian Journal of Forest, 9(3): 385-397. (In Persian)
- Pourali, S., M. Aliha, Kh. Sagheb-Talebi & M. Dadgar, 2017. Investigation on success of man-made forests in southern slopes of Alborz, a case study: Roudehen, Journal of Forest Research and Development, 3(1): 63-76. (In Persian)
- Pypker, T. G., B. J. Bond, T. E. Link, D. Marks & M. H. Unsworth, 2005. The importance of canopy structure in controlling the interception loss of rainfall: Examples from a young and old growth Douglas-fir forest, Agricultural and Forest Meteorology, 130: 113-129.
- Sadeghi, S. M. M., 2018. Performance of physical, regression, and machine learning models of forest rainfall partitioning in semiarid afforestations. Phd Thesis, Faculty of Natural Resources, University of Tehran, Tehran, Iran, 133 pp. (In Persian)
- Sadeghi, S. M. M. & P. Attarod, 2017. Estimation of ecohydrological parameters of trunk and canopy of a Pinus eldarica plantation, Journal of Forest Research and Development, 3(3): 207-220. (In Persian)
- Sadeghi, S. M. M., P. Attarod, T. G. Pypker & D. Dunkerley, 2014. Is canopy interception increased in semiarid tree plantations? Evidence from a field investigation in Tehran, Iran, Turkish Journal of Agriculture and Forestry, 38: 792-806.
- Sadeghi, S. M. M., P. Attarod & T. G. Pypker, 2015a. Differences in rainfall interception during the growing and non-growing seasons in a Fraxinus rotundifolia Mill. Plantation located in a semiarid climate, Journal of Agricultural Science and Technology, 17: 145-156.
- Sadeghi, S. M. M., P. Attarod, J. T. Van Stan, T. G. Pypker & D. Dunkerley, 2015b. Efficiency of the reformulated Gash’s interception model in semiarid afforestations, Agricultural and Forest Meteorology, 201: 76-85.
- Sadeghi, S. M. M., P. Attarod, J. T. Van Stan & T. G. Pypker, 2016. The importance of considering rainfall partitioning in afforestation initiatives in semiarid climates: A comparison of common planted tree species in Tehran, Iran, Science of the Total Environment, 568: 845-855.
- Sadeghi, S. M. M., J. T. Van Stan, T. G. Pypker & J. Friesen, 2017. Canopy hydrometeorological dynamics across a chronosequence of a globally invasive species, Ailanthus altissima (Mill., tree of heaven), Agricultural and Forest Meteorology, 240: 10-17.
- Sadeghi, S. M. M., J. T. Van Stan, T.G. Pypker, J. Tamjidi, J. Friesen & M. Farahnaklangroudi, 2018. Importance of transitional leaf states in canopy rainfall partitioning dynamics, European Journal of Forest Research, 137: 121-130.
- Sadeghi, S. M. M., P. Attarrod, O. Bozorg-Haddad, J. T. Van Stan & T. G. Pypker, 2019. Comparison of different Gash physically-based models for estimating stemflow in an elder pine stand in the Chitgar forest park, Iranian Journal of Forest, 10(4): 461-473. (In Persian)
- Van Stan, J. T. & T. G. Pypker, 2015. A review and evaluation of forest canopy epiphyte roles in the partitioning and chemical alteration of precipitation, Science of the Total Environment, 536: 813-824.
- Yildiz, O., E. Altundağ, B. Çetin, S. T. Güner, M. Sarginci & B. Toprak, 2018. Experimental arid land afforestation in Central Anatolia, Turkey, Environmental Monitoring and Assessment, 190(6): 355. doi: 10.1007/s10661-018-6724-1.
- Yosef, G., R. Walko, R. Avisar, F. Tatarinov, E. Rotenberg & D. Yakir, 2018. Large-scale semi-arid afforestation can enhance precipitation and carbon sequestration potential, Scientific Reports, 8(1): 996. doi: 10.1038/s41598-018-19265-6.