تأثیر قارچ میکوریز و ریزوباکتری محرک رشد بر فعالیت آنزیم‌های آنتی‌اکسیدانی نهال استبرق تحت تنش خشکی

نوع مقاله : علمی - پژوهشی

نویسندگان

1 دکترای جنگلداری، دانشکده منابع طبیعی و علوم دریایی نور، دانشگاه تربیت مدرس، نور، ایران

2 استادیار گروه جنگلداری، دانشکده کشاورزی و منابع طبیعی اهر، دانشگاه تبریز، اهر، ایران

3 استاد گروه جنگلداری، دانشکده منابع طبیعی و علوم دریایی نور، دانشگاه تربیت مدرس، نور، ایران

چکیده

این پژوهش با هدف بررسی فعالیت آنزیم­های آنتی‌اکسیدان مانند کاتالاز، سوپراکسیددیسموتاز، آسکوربات و پراکسیداز در نهال استبرق (Calotropis procera Ait) تلقیح یافته با میکروارگانیسم­های میکوریزی و ریزوباکتریایی تحت تأثیر تنش خشکی در یک شرایط گلخانه­ای طی یک دوره شش‌ماهه انجام شد. آزمایش در سه سطح تلقیحی (شاهد یا عدم تلقیح، قارچ میکوریز رﯾﺰوﻓﺎﮔﻮس اﯾﺮﮔﻮﻻرﯾﺲ و ریزوباکتریایی سودوموناس پوتیدا) و با سه سطح تنش خشکی دوره­ای (سه، شش و 12 روز آبیاری) در قالب طرح پایه کاملاً تصادفی با سه تکرار انجام شد. نتایج نشان داد که تلقیح میکوریز و ریزوباکتریایی سودوموناس تحت شرایط خشکی به­طور معنی­داری فعالیت آنزیم­های آنتی­اکسیدان را افزایش داد. بیشترین فعالیت آنزیم کاتالاز (57/1 واحد آنزیمی بر میلی­گرم وزن تر)، سوپراکسید دیسموتاز (43/17 واحد آنزیمی بر میلی­گرم وزن تر) و آسکوربات پراکسیداز (56/4 واحد آنزیمی بر میلی­گرم وزن تر) در نهال­های میکوریزی تحت تنش خشکی 12 روز و همچنین بیشترین مقدار فعالیت آنزیم پراکسیداز در نهال میکوریزی (96/11 واحد آنزیمی بر میلی­گرم وزن تر) و ریزوباکتریایی (9/12 واحد آنزیمی بر میلی­گرم وزن تر) در شرایط خشکی 12 روز مشاهده شد.

کلیدواژه‌ها


عنوان مقاله [English]

The effect of mycorrhizal fungi and growth-promoting rhizobacteria on the activity of antioxidant enzymes of Calotrope seedlings under drought stress

نویسندگان [English]

  • Ehsan Ghanbary 1
  • Omid Fathizadeh 2
  • Masoud Tabari 3
1 Ph.D. of Forestry, Department of Forestry, Faculty of Natural Resources and Marine Sciences, Tarbiat Modares University, Noor, I.R. Iran
2 Department of forestry, Ahar faculty of agriculture and natural resources, University of Tabriz, Ahar, Iran
3 Professor, Department of Forestry, Faculty of Natural Resources and Marine Sciences, Tarbiat Modares University, Noor, I.R. Iran
چکیده [English]

This study aimed to investigate the antioxidant enzyme activities such as catalase, superoxide dismutase, ascorbate peroxidase in Calotrope seedlings (Calotropis procera Ait) inoculated with mycorrhizal and Rhizobacterial microorganisms affected by drought stress under greenhouse conditions during a six-month period. Experiment in three inoculation levels (non-inoculated or control, Rhizophagus irregularis mycorrhizal fungi and Pseudomonas putida Rhizobacterial) and with three levels of drought durations (3, 6, and 12 days irrigation) in a completely randomized design with three replications was conducted. Results revealed that inoculation of mycorrhiza and Pseudomonas Rhizobacterial under drought stress significantly increased the activity of antioxidant enzymes. Maximum activity of catalase (1.57 units of enzyme per mg of fresh weight), superoxide dismutase (17.43 units of enzyme per mg of fresh weight) and ascorbate peroxidase (4.56 units of enzyme per mg of fresh weight) in mycorrhizal seedlings under drought stress for 12 days and also highest amount of peroxidase activity in mycorrhizal (11.96 units of enzyme per mg of fresh weight) and Rhizobacterial (12.9 units of enzyme per mg of fresh weight) seedlings under drought conditions for 12 days were observed.

کلیدواژه‌ها [English]

  • Active oxygen species
  • Oxidative stress
  • Pseudomonas
  • Rhizophagus irregularis
- Alguacil, M. M., J. A. Hernandez, F. Caravaca, B. Portillo & A. Roldan, 2003. Antioxidant enzyme activities in shoots from three mycorrhizal shrub species afforested in a degraded semi-arid soil, Physiologia Plantarum, 118(4): 562-570.
- Auge, R. M., 2001. Water relations, drought and vesicular–arbuscular mycorrhizal symbiosis, Mycorrhiza, 11(1): 3-42.
- Auge, R. M., D. M. Sylvia, S. Park, B. Buttery, R. A. M. Saxton, J. L. Moore & K. Cho. 2004. Partitioning mycorrhizal influence on water relations of Phaseolus vulgaris into soil and plant components, Canadian Journal of Botany, 82(4): 503-514.
- Augé, R. M., J. L. Moore, K. Cho, J. C. Stutz, D. M. Sylvia, A.K. Al-Agely & A. M. Saxton, 2003. Relating foliar dehydration tolerance of mycorrhizal Phaseolus vulgaris to soil and root colonization by hyphae, Journal of Plant Physiology, 160(10): 1147-1156.
- Bahmani, M., Gh. Jalali, A. Asgharzadeh & M. Tabari, 2015. Efficiency of Rhizobacteria inoculation of Pseudomonus putida 169 on the improvement of some vegetative traits of Calotropis procera Ait under drought stress, Journal of Soil Biology, 3(2): 107-117 (In Persian).
- Bahmani, M., M. Modaresi & M. Mohamadi, 2018. Comparison on efficiency of arbuscolar mycorrhizal fungus and plant growth promotion rhizobacterium inoculum on nutrition elements concentration and seedling quality indices of Calotropis Procera, Journal of Desert Management, 6(11): 51-64 (In Persian).
- Barros, J., H. Serk, I. Granlund & E. Pesquet, 2015. The cell biology of lignification in higher plants, Annals of Botany, 115(7): 1053-1074.
- Bartels, D., 2001. Targeting detoxification pathways: an efficient approach to obtain plants with multiple stress tolerance, Trends in Plant Science, 6(7): 284-286.
- Dehghan, S., K. S. M. Tabari & G. Jalali, 2016. The effect of mycorrhizal fungi and growth-promoting rhizobacteria on the activity of antioxidant enzymes of Calotrope Seedlings under drought Stress, Journal of Forest Research and Development, 2(3): 289-299 (In Persian).
- Fitter, A. H., 1988. Water relations of red clover Trifolium pratense L. as affected by VA mycorrhizal infection and phosphorus supply before and during drought, Journal of Experimental Botany, 39(5): 595-603.
- Fourquet, S., M. E. Huang, B. D’Autreaux & M. B. Toledano, 2008. The dual functions of thiol-based peroxidases in H2O2 scavenging and signaling, Antioxidants & Redox Signaling, 10(9): 1565-1576.
- Fu, Q., L. Chen, N. Ding & B. Guo, 2010. Ameliorative effects of inoculation with the plant growth-promoting rhizobacterium Pseudomonas sp. DW1 on growth of eggplant (Solanum melongena L.) seedlings under salt stress, Agricultural Water Management, 97(12): 1994-2000.
- Gururani, M. A., C. P. Upadhyaya, V. Baskar, J. Venkatesh, A. Nookaraju & S. W. Park, 2013. Plant growth-promoting rhizobacteria enhance abiotic stress tolerance in Solanum tuberosum through inducing changes in the expression of ROS- Scavenging enzymes and improved photosynthetic performance, Journal of Plant Growth Regulation, 32(2): 245-258.
- Jia, J., S. Li, X. Cao, H. Li, W. Shi, A. Polle, T. Liu, C. Peng & Z. Luo, 2015. Physiological and transcriptional regulation in poplar roots and leaves during acclimation to high temperature and drought, Physiologia Plantarum, 157(1): 38-53.
- Jin, R., H. Shi, C. Han, B. Zhong, Q. Wang & Z. Chan, 2015. Physiological changes of purslane (Portulaca oleracea L.) after progressive drought stress and rehydration, Scientia Horticulturae, 194: 215-221.
- Kohler, J., F. Caravaca, L. Carrasco & A. Roldan, 2006. Contribution of Pseudomonas mendocina and Glomus intraradices to aggregates stabilisation and promotion of biological properties in rhizosphere soil of lettuce plants under field conditions, Soil Use and Management, 22(3): 298-304.
- Kohler, J., J. A. Hernandez, F. Caravaca & A. Roldan, 2008. Plant-growth-promoting rhizobacteria and arbuscular mycorrhizal fungi modify alleviation biochemical mechanisms in water-stressed plants, Functional Plant Biology, 35(2): 141-151.
- Liu, B., M. Li, L. Cheng, D. Liang, Y. Zou & F. Ma, 2012. Influence of rootstock on antioxidant system in leaves and roots of young apple trees in response to drought stress, Plant Growth Regulation, 67(3): 247-256.
- Ouledali, S., M. Ennajeh, A. Zrig, S. Gianinazzi & H. Khemira, 2018. Estimating the contribution of arbuscular mycorrhizal fungi to drought tolerance of potted olive trees (Olea europaea), Acta Physiologiae Plantarum, 40(5): 81-92.
- Ozkur, O., F. Ozdemir, M. Bor & I. Turkan, 2009. Physiochemical and antioxidant responses of the perennial xerophyte Capparis ovata Desf. to drought, Environmental and Experimental Botany, 66(3): 487-492.
- Pilevar, B., M. Bahmani, Y. Yousefi, A. Asgharzadeh & D. Kartolinezhad, 2015. Efficiency of arbuscular mycorrhizal fungus on Calotropis procera Ait.gas exchange, Proceedings of Fourteenth Congress of Soil Science - Chemistry fertility and soil nutrition (In Persian).
- Pitman, M. G. & A. Lauchli, 2002. Global impact of salinity and agricultural ecosystems, In: Salinity: Environment-Plants Molecules, 3-20.
- Porcel, R., J. M. Barea & J. M. Ruiz-Lozano, 2003. Antioxidant activities in mycorrhizal soybean plants under drought stress and their possible relationship to the process of nodule senescence, New Phytologist, 157(1): 135-143.
- Requena, N., E. Perez-Solıs, C. Azcon-Aguilar, P. Jeffries & J. M. Barea, 2001. Management of indigenous plant-microbe symbioses aids restoration of desertified ecosystems, Applied and Environmental Microbiology, 67(2): 495-498.
- Ruiz-Lozano, J. M., 2003. Arbuscular mycorrhizal symbiosis and alleviation of osmotic stress: new perspectives for molecular studies, Mycorrhiza, 13(6): 309-317.
- Ruiz-Lozano, J. M., R. Azcon & J. M. Palma, 1996. Superoxide dismutase activity in arbuscular mycorrhizal Lactuca sativa plants subjected to drought stress, New Phytologist, 134(2): 327-333.
- Ruiz-Sanchez, M., E. Armada, Y. Munoz, I. E. G. de Salamone, R. Aroca, J. M. Ruiz-Lozano & R. Azcn, 2011. Azospirillum and arbuscular mycorrhizal colonization enhance rice growth and physiological traits under well-watered and drought conditions, Journal of Plant Physiology, 168(10): 1031-1037.
- Saikia, R., R. Kumar, D. K. Arora, D. K. Gogoi & P. Azad, 2006. Pseudomonas aeruginosa inducing rice resistance against Rhizoctonia solani: production of salicylic acid and peroxidases, Folia Microbiologica, 51(5): 375-380.
- Samancioglu, A., E. Yildirim, M. Turan, R. Kotan, U. Sahin & R. Kul, 2016. Amelioration of Drought Stress Adverse Effect and Mediating Biochemical Content of Cabbage Seedlings by Plant Growth Promoting Rhizobacteria, International Journal of Agriculture & Biology, 18(5): 948-956.
- Sanchen-Blanco, M. J., T. Ferrandez, M. A. Morales, A. Morte & J. Alarcon, 2004. Variations in water status, gas exchange, and growth in Rosmarinus officinalis plants with Glomus deserticola under drought conditions, Journal of Plant Physiology, 161(6): 675-682.
- Sandhya, V., Sk. Z. Ali, G. Minakshi, R. Gopal & B. Venkateswarlu, 2010. Effect of plant growth promoting Pseudomonas spp. on compatible solutes, antioxidant status and plant growth of maize under drought stress, Plant Growth Regul, 62(1): 21-30.
- Shi, H., T. Ye, B. Song, X. Qi & Z. Chan, 2015. Comparative physiological and metabolomic responses of four Brachypodium distachyon varieties contrasting in drought stress resistance, Acta Physiologiae Plantarum, 37(6): 1-12.
- Talbi, S., M. C. Romero-Puertas, A. Hernández, L. Terrón, A. Ferchichi & L. M. Sandalio, 2015. Drought tolerance in a Saharian plant Oudneya africana: Role of antioxidant defences, Environmental and Experimental Botany, 111: 114-126.
- Verma, P., R. Saxena & R. S. Tomar, 2016. Rhizobacteria: A Promising Tool for Drought Tolerance in Crop Plants, International Journal of Pharma & Bio Sciences, 21: 116-125.
- Wu, M., W. H. Zhang, C. Ma & J. Y. Zhou, 2013. Changes in morphological, physiological, and biochemical responses to different levels of drought stress in chinese cork oak (Quercus variabilis Bl.) seedlings, Russian Journal of Plant Physiology, 60(5): 681-692.
- Wu, Q. S., R. X. Xia, Y. N. Zou & G. Y. Wang, 2007. Osmotic solute responses of mycorrhizal citrus (Poncirus trifoliata) seedlings to drought stress, Acta Physiologiae Plantarum, 29(6): 543-553.
- Zhang, F., Y. N. Zou & Q. S. Wu, 2018. Quantitative estimation of water uptake by mycorrhizal extraradical hyphae in citrus under drought stress, Scientia Horticulturae, 229: 132-136.