پیش بینی جنگل زدایی و بازیابی جنگل با استفاده از مدل تبدیل زمین (‏LTM‏) در جنگل های زاگرس شمالی

نوع مقاله : علمی - پژوهشی

نویسندگان

1 دکتری جنگلداری، دانشکده منابع طبیعی، دانشگاه ارومیه، ارومیه

2 استاد، گروه جنگلداری، دانشکده منابع طبیعی، دانشگاه ارومیه، ارومیه، ایران

3 دانشیار، گروه مرتع و آبخیزداری، دانشکده منابع طبیعی، دانشگاه ارومیه، ارومیه، ایران

4 پژوهشگر اطلاعات جغرافیایی، شرکت ESRI، ایالات متحده.

5 دانشیار، گروه جنگلداری، دانشکده منابع طبیعی، دانشگاه ارومیه، ارومیه، ایران

چکیده

الگوی تغییرات کاربری اراضی در مقیاس­های مختلف زمانی و مکانی به­صورت غیرخطی است. از این­رو برای پیش­بینی اثرات بالقوه و منفی این تغییرات بر خدمات اکوسیستمی جنگل­ها در آینده نیاز به ابزارهای غیرخطی مانند شبکه­های عصبی مصنوعی است. در این پژوهش برای پیش­بینی جنگل­زدایی و بازیابی اراضی جنگلی شهرستان سردشت برای 10، 20 و 30 سال آینده از مدل تبدیل زمین یا LTM که یک مدل مبتنی بر شبکه­های عصبی مصنوعی و GIS است استفاده شد. بدین منظور سه سناریوی مختلف شامل دوره­های زمانی 1386-1376، 1396-1376 و 1396-1386 استفاده شد و جنگل­زدایی و بازیابی اراضی جنگلی سردشت با استفاده از 14 متغیر مختلف برای سال­های 1406، 1416 و 1426 پیش­بینی شد. نتایج نشان داد طی 20 سال دورۀ زمانی موردبررسی (1376 تا 1396) با وجود 57/2373 هکتار بازیابی جنگل­های سردشت، 63/10314 هکتار جنگل­زدایی رخ داده است. مدل­سازی جنگل­زدایی و بازیابی جنگل توسط هر سه سناریو با مقدار ROC بالای 8/0 برای همه مدل­ها نشان­دهندۀ افزایش قطعی جنگل­زدایی در سردشت طی سه دهۀ آینده بوده است، به­طوری­که بر اساس سناریوی 1386-1376، پیش­بینی شد 24/22296 هکتار از جنگل­های منطقه طی 30 سال آینده تخریب خواهد شد. نتایج این پژوهش می­تواند برای برنامه­ریزی­های حفاظتی صحیح و افزایش برنامه­های نظارتی در مناطق با پتانسیل تخریبی استفاده شود.

کلیدواژه‌ها


عنوان مقاله [English]

Forecasting deforestation and forest recovery using Land Transformation Model ‎‎(LTM) in Iranian Zagros forests

نویسندگان [English]

  • Hadi Beygiheidarlou 1
  • Abbas Banj Shafiei 2
  • Mahdi Erfanian 3
  • Amin Tayyebi 4
  • Ahmad Alijanpour 5
1 Forestry department, Faculty of Natural Resources, Urmia, Iran.
2 Professor, Department of Forestry, Faculty of Natural Resources, Urmia University, Urmia, I.R. Iran
3 Associate Professor, Department of Rangelands and Watershed Management, Faculty of Natural Resources, Urmia University, Urmia, I.R. Iran
4 Geospatial Data Scientist, ESRI, Redland, CA 92373, United States
5 Associate Professor, Department of Forestry, Faculty of Natural Resources, Urmia University, Urmia, I. R. Iran
چکیده [English]

Land use changes and its patterns in spatial and temporal scales occur in a non-linear way. Therefore, to predict the potential and negative effects of these changes on forest ecosystem services in future, nonlinear tools such as Artificial Neural Networks (ANNs) are needed. In this study for forecasting deforestation and recovery of Sardasht forests for 10, 20 and 30 years later, Land Transformation Model (LTM) based on ANNs and GIS was used. For this purpose, three different scenarios including time periods of 1997-2007, 1997-2017 and 2007-2017 were used, and deforestation and forest recovery of Sardasht using 14 variables for 2027, 2037 and 2047 were predicted. Results showed that over 20-year studied time period (1997 to 2017) despite 2372.57 ha recovery of Sardasht forests, 10314.63 ha deforestation occurred. Deforestation and forest recovery modeling by all three scenarios with good Receiver Operating Characteristic curve (or ROC curve) (more than 0.8) for all scenarios, show a definite and increasing deforestation process in Sardasht over the next three decades, so based on the 1997-2007 scenario, it is anticipated that 22296.24 ha of forests in the region will be destroyed over the next 30 years. The results of this research can be used for proper conservation planning and increasing regulatory programs in areas with high degradation potential‎.

کلیدواژه‌ها [English]

  • Forest recovery
  • Deforestation
  • Sardasht
  • Land Transformation Model (LTM)
  • Modeling‎
Beygi Heidarlou, H.; Shafiei, A. B.; Erfanian, M.; Tayyebi, A.; Alijanpour, A., Armed conflict and land-use changes: Insights from Iraq-Iran war in Zagros forests. Forest Policy and Economics 2020a, 118, 102246.
Beygi Heidarlou, H.; Shafiei, A. B.; Erfanian, M.; Tayyebi, A.; Alijanpour, A., Underlying driving forces of forest cover changes due to the implementation of preservation policies in Iranian northern Zagros forests. International Forestry Review 2020b, 22 (2), 241-256.
Beygi Heidarlou, H.; Shafiei, A. B.; Erfanian, M.; Tayyebi, A.; Alijanpour, A., Effects of preservation policy on land use changes in Iranian Northern Zagros forests. Land use policy 2019, 81, 76-90.
Gessesse, B.; Bewket, W.; Bräuning, A., Model‐based characterization and monitoring of runoff and soil erosion in response to land use/land cover changes in the Modjo watershed, Ethiopia. Land degradation & development 2015, 26 (7), 711-724.
Heathcote, I. W., Integrated watershed management: Principles and practices. john wiley& sons. Inc. New York 1998.
Hostert, P.; Kuemmerle, T.; Prishchepov, A.; Sieber, A.; Lambin, E. F.; Radeloff, V. C., Rapid land use change after socio-economic disturbances: the collapse of the Soviet Union versus Chernobyl. Environmental Research Letters 2011, 6 (4), 045201.
Houet, T.; Loveland, T. R.; Hubert-Moy, L.; Gaucherel, C.; Napton, D.; Barnes, C. A.; Sayler, K., Exploring subtle land use and land cover changes: a framework for future landscape studies. Landscape Ecol. 2010, 25 (2), 249-266.
Kabba, V. T. S.; Li, J., Analysis of land use and land cover changes, and their ecological implications in Wuhan, China. Journal of Geography and Geology 2011, 3 (1), 104-118.
Lek-Ang, S.; Deharveng, L.; Lek, S., Predictive models of collembolan diversity and abundance in a riparian habitat. Ecol. Model. 1999, 120 (2-3), 247-260.
Mahmoudi, M.; Alijanpour, A.; Banj Shafiei, A.; Zargharan, M. R.; Mansouri, A., Effects of preservation plan on quantitative and qualitative characteristics of the mature stand, regeneration and extension of Loranthus europaeus in Salas-e Babajani County Forest. Journal of Forest Research and Development 2021, 7(2), 183-197.
Mas, J.-F.; Puig, H.; Palacio, J. L.; Sosa-López, A., Modelling deforestation using GIS and artificial neural networks. Environ. Model. Software 2004, 19 (5), 461-471.
Matthews, R. B.; Gilbert, N. G.; Roach, A.; Polhill, J. G.; Gotts, N. M., Agent-based land-use models: a review of applications. Landscape Ecol. 2007, 22 (10), 1447-1459.
Newman, G.; Lee, J.; Berke, P., Using the land transformation model to forecast vacant land. Journal of Land Use Science 2016, 11 (4), 450-475.
Pijanowski, B. C.; Brown, D. G.; Shellito, B. A.; Manik, G. A., Using neural networks and GIS to forecast land use changes: a land transformation model. Computers, environment and urban systems 2002, 26 (6), 553-575.
Pijanowski, B. C.; Hyndman, D.; Shellito, B. A. In The application of the land transformation, groundwater flow and solute transport models for michigan’s grand traverse bay watershed, Proceedings of the National American Planning Association Meeting, New Orleans, LA, USA, 2001.
Pijanowski, B. C.; Tayyebi, A.; Doucette, J.; Pekin, B. K.; Braun, D.; Plourde, J., A big data urban growth simulation at a national scale: configuring the GIS and neural network based land transformation model to run in a high performance computing (HPC) environment. Environ. Model. Software 2014, 51, 250-268.
Pijanowski, B.; Alexandridis, K.; Mueller, D., Modelling urbanization patterns in two diverse regions of the world. Journal of Land Use Science 2006, 1 (2-4), 83-108.
Riutta, T.; Slade, E. M.; Morecroft, M. D.; Bebber, D. P.; Malhi, Y., Living on the edge: quantifying the structure of a fragmented forest landscape in England. Landscape Ecol. 2014, 29 (6), 949-961.
Salehi, P.; Banj Shafiei, A.; Barin, M.; Khezri, Kh., Effect of surface fire on dynamic of some chemico-physical properties of forest soil, Sardasht, West Azarbayjan. Journal of Forest Research and Development 2020, 6(3), 395-410.
Tayyebi, A. H.; Tayyebi, A.; Khanna, N., Assessing uncertainty dimensions in land-use change models: using swap and multiplicative error models for injecting attribute and positional errors in spatial data. Int. J. Remote Sens. 2014, 35 (1), 149-170.
Tayyebi, A.; Pekin, B. K.; Pijanowski, B. C.; Plourde, J. D.; Doucette, J. S.; Braun, D., Hierarchical modeling of urban growth across the conterminous USA: developing meso-scale quantity drivers for the Land Transformation Model. Journal of Land Use Science 2013, 8 (4), 422-442.
Tayyebi, A.; Pijanowski, B. C., Modeling multiple land use changes using ANN, CART and MARS: Comparing tradeoffs in goodness of fit and explanatory power of data mining tools. International Journal of Applied Earth Observation and Geoinformation 2014, 28, 102-116.
Tayyebi, A.; Pijanowski, B. C.; Tayyebi, A. H., An urban growth boundary model using neural networks, GIS and radial parameterization: An application to Tehran, Iran. Landscape Urban Plann. 2011, 100 (1-2), 35-44.
Veldkamp, A.; Lambin, E. F., Predicting land-use change. Agriculture, Ecosystems and Environment2001, 85, 1-6.
Živković, Ž.; Mihajlović, I.; Nikolić, D., Artificial neural network method applied on the nonlinear multivariate problems. Serbian journal of management 2009, 4 (2), 143-155.