Modeling of Iranian oak distribution in the southwest of Iran based on the presence-based approach Maximum Entropy (MaxEnt)‎

Document Type : Scientific article

Authors

1 Ph.D. National Center of Genetic Resource, Education and Extension Organization (AREEO), Tehran, I. R. ‎Iran‎

2 Ph.D, Faculty of Natural Resource, University of Tarbiat Modares, Tehran, I. R. Iran. ‎

3 Assistant Professor, Seed and Plant Improvement Institute, Education and Extension Organization ‎‎(AREEO), Tehran, I. R. Iran. ‎

4 Ph.D., Department of Natural Resources, Ilam, I. R. Iran. ‎

Abstract

Understanding the dynamics and spatial distribution of plant species is an important strategy to conserve biodiversity. Modeling the distribution of plant species is one of the important methods in this field, which uses appropriate indicators to identify the relationships of different environmental variables and evaluate the habitat suitability for a species. In this study, in order to identify suitable areas for the presence of Iranian oak, which is one of the most important tree species in the Zagros forests in Iran, the model of maximum entropy (MaxEnt) was used. 16 environmental variables including topographic, climatic, and soil variables were used as independent variables and occurrences of Iranian oak were used as response variables. In order to evaluate the model, the area under the curve (AUC) was used. Jackknife method was used to determine and evaluate the importance of environmental variables. The results of this study showed that the MaxEnt model had a high efficiency with AUC: 0.98 and the mean annual temperature, elevation, and precipitation in the wettest quarter are more important. In addition, aspect and NDVI were the least important in model construction. In this study, the suitability map of Iranian oak in the study area was prepared, which can be a reliable source for managers in planning to protect and rehabilitate deforested forests in the study area.

Keywords


Ahmadi, K.; Alavi, S. J.; Amiri, G. Z.; Hosseini, S. M.; Serra-Diaz, J. M.; Svenning, J.-C., The potential impact of future climate on the distribution of European yew (Taxus baccata L.) in the Hyrcanian Forest region (Iran). International Journal of Biometeorology 2020, 64 (9), 1451-1462.
Ahmadi, K.; Jalil Alavi, S.; Zahedi Amiri, G.; Mohsen Hosseini, S.; Serra‐Diaz, J. M.; Svenning, J. C., Patterns of density and structure of natural populations of Taxus baccata in the Hyrcanian forests of Iran. Nordic journal of botany 2020, 38 (3), 1-10.
Alavi, S. J.; Ahmadi, K.; Hosseini, S. M.; Nouri, Z., Modeling the potential habitat of English yew (Taxus baccata L.) in the Hyrcanian forests of Iran. Forest Research and Development 2019, 5 (4), 513-525.
Bagheri, R.; Erfanifard, Y., Spatial distribution of Persian Oak decline using a combination of geostatistical techniques and remote sensing (Case study: Barm plain, Fars province). Journal of RS and GIS for Natural Resources 2020, 11 (1), 104-120.
Barnes, J. C.; Delborne, J. A., Rethinking restoration targets for American chestnut using species distribution modeling. Biodiversity and Conservation 2019, 28 (12), 3199-3220.
Beckage, B.; Osborne, B.; Gavin, D. G.; Pucko, C.; Siccama, T.; Perkins, T., A rapid upward shift of a forest ecotone during 40 years of warming in the Green Mountains of Vermont. Proceedings of the National Academy of Sciences 2008, 105 (11), 4197-4202.
Bradley, B. A.; Olsson, A. D.; Wang, O.; Dickson, B. G.; Pelech, L.; Sesnie, S. E.; Zachmann, L. J., Species detection vs. habitat suitability: are we biasing habitat suitability models with remotely sensed data? Ecological Modelling 2012, 244, 57-64.
Buitenwerf, R.; Rose, L.; Higgins, S. I., Three decades of multi-dimensional change in global leaf phenology. Nature Climate Change 2015, 5 (4), 364-368.
Cedro, A., Influence of thermic and pluvial conditions on the radial increments of Pseudotsuga menziesii Franco from Western Pomerania, Poland. TRACE–Tree Rings in Archaeology, Climatology and Ecology 2006, 4, 132-140.
Davis, J.; Schober, A.; Bahn, M.; Sveinbjörnsson, B., Soil carbon and nitrogen turnover at and below the elevational treeline in northern Fennoscandia. Arctic and alpine research 1991, 23 (3), 279-286.
Du, S.; Yamanaka, N.; Yamamoto, F.; Otsuki, K.; Wang, S.; Hou, Q., The effect of climate on radial growth of Quercus liaotungensis forest trees in Loess Plateau, China. Dendrochronologia 2007, 25 (1), 29-36.
Ferraz, K. M. P. M. D. B.; Ferraz, S. F. D. B.;Paula, R. C. D.; Beisiegel, B. & Breitenmoser, C., Species distribution modeling for conservation purposes. Natureza & Conservação 2012, 10(2), 214-220.‏
Haidarian Aghakhani, M.; Tamartash, R.; Jafarian, Z.; Tarkesh Esfahani, M.; Tatian, M., Predicting the impacts of climate change on Persian oak (Quercus brantii) using Species Distribution Modelling in Central Zagros for conservation planning. Journal of Environmental Studies 2017, 43 (3), 497-511. (In Persian)
Hassanzad Navroodi, I.; Zarkami, R.; Basati, M.; Mohammadi Limaei, S., Quantitative and qualitative characteristics of Persian oak along altitudinal gradation and gradient (Case study: Ilam province, Iran). Journal of Forest Science [Prague] 2015, 61 (7), 297-305.
Heydari, M.; Pourbabaee, H.; Atarroshan, S., Natural regeneration status of Iranian oak among ecological groups in Walnut-Zagros vegetation area. Iranian Jouranal of Biology 2011, 24(4).878-592. (In Persian)
Hirzel, A. H.; Hausser, J.; Chessel, D.; Perrin, N., Ecological‐niche factor analysis: how to compute habitat‐suitability maps without absence data? Ecology 2002, 83 (7), 2027-2036.
Hoffman, J. D.; Narumalani, S.; Mishra, D. R.; Merani, P.; Wilson, R. G., Predicting potential occurrence and spread of invasive plant species along the North Platte River, Nebraska. Invasive Plant Science and Management 2008, 1 (4), 359-367.
Jensen, D. A.; Rao, M.; Zhang, J.; Grøn, M.; Tian, S.; Ma, K.; Svenning, J.-C., The potential for using rare, native species in reforestation–A case study of yews (Taxaceae) in China. Forest Ecology and Management 2021, 482, 118816.
Kong, F.; Tang, L.; He, H.; Yang, F.; Tao, J.; Wang, W., Assessing the impact of climate change on the distribution of Osmanthus fragrans using Maxent. Environmental Science and Pollution Research 2021, 28 (26), 34655-34663.
Körner, C., The use of ‘altitude’in ecological research. Trends in ecology & evolution 2007, 22 (11), 569-574.
Lv, X.; Zhou, G., Climatic suitability of the geographic distribution of Stipa breviflora in Chinese temperate grassland under climate change. Sustainability 2018, 10 (10), 3767.
Ma, B.; Sun, J., Predicting the distribution of Stipa purpurea across the Tibetan Plateau via the MaxEnt model. BMC ecology 2018, 18 (1), 1-12.
Mirdavoodi, H.; Marvi Mohadjer, M. R.; Zahedi Amiri, G.; Etemad, V., Disturbance effects on plant diversity and invasive species in western oak communities of Iran (Case study: Dalab Forest, Ilam). Iranian Journal of Forest and Poplar Research 2013, 21 (1), 1-15. (In Persian)
Mirzaei, M.; Bonyad, A. E.; Akhavan, R.; Naghdi, R., Decline modelling of Quercus brantii under effects of physiographic factors in Dalab forests of Ilam. Forest Research and Development 2019, 5 (2), 329-342. (In Persian)
Naghipour Borj, A. A.; Haidarian Aghakhani, M.; Sangoony, H., Application of ensemble modelling method in predicting the effects of climate change on the distribution of Fritillaria imperialis L. Journal of Plant Research (Iranian Journal of Biology) 2019, 32 (3), 609-621. (In Persian)
Naseri Karimvand, S.; Poursartip, L.; Moradi, M.; Soosani, J., Dynamic Effects of climate variables (temperature and precipitation) on the annual diameter growth of Iranian oak (Quercus brantti Lindl). Forest Research and Development 2016, 2 (1), 63-71. (In Persian)
Nourinejad, J.; Rostami, A., Investigation of oak decline and its relation to physiographic factors in the forests of west of Iran (case study: Ilam Province). J Biodivers Environ Sci (JBES) 2014, 5 (2), 201-207. (In Persian)
Phillips, S. J.; Anderson, R. P.; Schapire, R. E., Maximum entropy modeling of species geographic distributions. Ecological modelling 2006, 190 (3-4), 231-259.
Poursartip, L., Comparison of anatomical characteristics and chronology Avery trees (Quercus macranthera) and Oak (Quercus castanifolia) (Case study: North Caspian forests). PhD thesis. Faculty of Natural Resources, University of Tehran, Iran, Karaj, 2012, 80 p. (In Persian).
Qin, A.; Jin, K.; Batsaikhan, M.-E.; Nyamjav, J.; Li, G.; Li, J.; Xue, Y.; Sun, G.; Wu, L.; Indree, T., Predicting the current and future suitable habitats of the main dietary plants of the Gobi Bear using MaxEnt modeling. Global Ecology and Conservation 2020, 22, e01032.
Ramachandran, R. M.; Roy, P. S.; Chakravarthi, V.; Sanjay, J.; Joshi, P. K., Long-term land use and land cover changes (1920–2015) in Eastern Ghats, India: Pattern of dynamics and challenges in plant species conservation. Ecological Indicators 2018, 85, 21-36.
Sagheb-Talebi, K.; Pourhashemi, M.; Sajedi, T., Forests of Iran: A Treasure from the Past, a Hope for the Future. Springer: 2014.
Sefidi, K.; Ghavidel, A.; Esmaeilpour, M.; Mohammadi, S., Effect of soil physical and chemical properties on tree cover diversity and structure in Marivan Qamyshlh forests. Forest and Wood Products 2020, 73 (2), 225-233. (In Persian)
Soleymani, N.; Dargahi, D.; Pourhashemi, M.; Amiri., The effect of physiographic factors on the search structure of oak groups in Upper Babakuse forest, Kermanshah province. Iranian journal of Forest and Poplar Research 2008. 16(3).467-477. (In Persian)
Taleshi, H.; Jalali, S. G.; Alavi, S. J.; Hosseini, S. M.; Naimi, B.; Zimmermann, N. E., Climate change impacts on the distribution and diversity of major tree species in the temperate forests of Northern Iran. Regional Environmental Change 2019, 19 (8), 2711-2728.
Yang, X.-Q.; Kushwaha, S.; Saran, S.; Xu, J.; Roy, P., Maxent modeling for predicting the potential distribution of medicinal plant, Justicia adhatoda L. in Lesser Himalayan foothills. Ecological engineering 2013, 51, 83-87.