کارآیی تلفیق ابرنقاط TOF و TLS در اندازه گیری مشخصه های کمّی درختان شهری

نوع مقاله : علمی - پژوهشی

نویسندگان

1 دانشجوی دکترای علوم جنگل، دانشکده کشاورزی و منابع طبیعی دانشگاه لرستان، خرم‌آباد، ایران

2 دانشیار، گروه جنگلداری، دانشکده کشاورزی و منابع طبیعی دانشگاه لرستان، خرم‌آباد، ایران

3 دانشیار، گروه فتوگرامتری، دانشکده نقشه‌برداری، دانشگاه خواجه نصیرالدین طوسی، تهران، ایران

4 مدیر تحقیقات گروه سنجش از دور و فتوگرامتری، موسسه تحقیقات فضایی فنلاند

5 دکترای علوم جنگل، دانشکده کشاورزی و منابع طبیعی دانشگاه لرستان، خرم‌آباد، ایران

چکیده

در فضای سبز شهری بسته به هدف، از گونه­های مختلف پهن­برگ و سوزنی­برگ استفاده می­شود که دارای ویژگی­های متنوع و پیچیده هستند. در این پژوهش برای دست­یابی به اطلاعات دقیق درختان و با هدف پوشش نقاط ضعف دو فناوری TLS و TOF از تلفیق آن­ها استفاده شد. برای این منظور تعداد 20 اصله درخت از گونه­های پهن­برگ (نارون و زبان گنجشک) و سوزنی­برگ (سروناز و سرونقره­ای) فضای سبز دانشگاه خواجه نصیرالدین طوسی انتخاب و ابرنقاط آن­ها با استفاده از TLS وTOF تولید شد. پس از پردازش ابرنقاط متغیرهای قطر و سطح مقطع برابرسینه و مساحت تاج اندازه­گیری شد. RMSE اندازه­گیری قطر برابرسینه درختان گونه­های پهن­برگ و سوزنی­برگ با استفاده از فناوری TOF به­ترتیب 33/0 و 38/0 سانتی­متر و با فناوری TLS، 59/0 و 62/0 سانتی­متر به­دست آمد. خطای اندازه­گیری قطر پهن­برگان به­علت پوست نازک­تر، نسبت به سوزنی­برگان کمتر بود. سطح مقطع اندازه­گیری­شده با استفاده از فناوری TOF از دقت بیشتری نسبت به TLS برخوردار بود؛ در مقابل فناوری TLS در اندازه­گیری مساحت تاج عملکرد دقیق‌تری دارد. سطح مقطع و مساحت تاج درختان پهن­برگ به­علت شکل نامتقارن و نامنظم تنه و تاج این درختان خطای بیشتری نسبت به سوزنی­برگان نشان داد. با توجه به نتایج به­دست­آمده و بررسی نقاط قوت و ضعف این فناوری­ها، تلفیق این دو، نتایج دقیق‌تر و جامع­تری را در­پی دارد. بنابراین توصیه می­شود در پژوهش­های علمی دقیق که مبنای کارهای اجرایی قرار می­گیرند، از تلفیق این فناوری­ها استفاده شود.

کلیدواژه‌ها


عنوان مقاله [English]

Visual The effectiveness of combining TOF and TLS point clouds in measuring the quantitative characteristics of urban trees

نویسندگان [English]

  • Masoumeh Fatholahi 1
  • Javad Soosnai 2
  • Ali Mohammadzadeh 3
  • Eetu Puttonen 4
  • Ramin Hosseinzadeh 5
1 Ph.D. Student of Forestry, Faculty of Agriculture and Natural Resources, Lorestan University, Khorramabad, I. R. Iran
2 Associate Professor, Department of Forestry, Faculty of Agriculture and Natural Resources, Lorestan University, Khorramabad, I. R. Iran
3 Associate Professor, Department of Photogrammetry and Remote Sensing, K. N. Toosi University of Technology, Tehran, I. R. Iran
4 Finnish Geospatial Research Institute FGI, National Land Survey of Finland. Finland
5 Ph.D. of Forestry, Faculty of Agriculture and Natural Resources, Lorestan University, Khorramabad, I. R. Iran
چکیده [English]

Depending on the purpose, different species of broadleaf and coniferous trees are used in the urban green space, which has diverse and complex characteristics. In this study, to obtain accurate information about trees and to cover the weaknesses of two technologies, TLS and TOF, their combination was used. For this purpose, 20 trees were selected from broadleaf (Fraxinus Ornus L. & Ulmus umbraculifera) and coniferous (Cupressus sempervirens L. & Cupressus arizonica Greene) species in the green space of Khajeh Nasir Toosi University and their point clouds were produced using TLS and TOF. After processing point clouds, the parameters of breast diameter, basal area, and crown area were measured. The RMSE of measuring the diameter at the breast of broadleaf and coniferous trees using TOF technology was 0.33 and 0.38 cm and TLS technology was 0.59 and 0.62 cm respectively. The diameter measurement error of the broadleaf is less than the coniferous due to the thinner bark. The basal area measured using TOF technology is more accurate than TLS; On the other hand, TLS technology has a precise and unique function in measuring the crown area. The basal area and crown area of broadleaf trees showed more errors than coniferous trees due to the asymmetric and irregular shape of the stem and crown. According to the obtained results and the examination of the strengths and weaknesses of these technologies, the combination of these two leads to more accurate and comprehensive results. Therefore, it is recommended to use the integration of these technologies in detailed scientific studies that are the basis of executive works.

کلیدواژه‌ها [English]

  • Basal area
  • Crown area
  • Terrestrial Laser Scanning
  • Time of Flight
Abdollahzadeh, B.; Hojjati, S. M.; Sagheb Talebi, K.; Kooch, Y., Impact of plantation with Robinia pseudoacacia and Pinus eldarica on soil physic-chemical properties and Co2 emission in Tehran urban landscape. Forest Research and Development 2019, 4 (4), 463-476. (in persian)
 Abolhasani, H.; Mohammadzadeh, A., Detection of some Tree Species from Terrestrial Laser Scanner Point Cloud Data Using Support-vector Machine and Nearest Neighborhood Algorithms. Journal of Geomatics Science and Technology 2020, 9 (3), 29-40. (In Persian)
Fan, Y.; Feng, Z.; Mannan, A.; Khan, T. U.; Shen, C.; Saeed, S., Estimating tree position, diameter at breast height, and tree height in real-time using a mobile phone with RGB-D SLAM. Remote Sensing 2018, 10 (11), 1845.
Fathollahi, M.; Soosani, J.; Mohammadzadeh, A.; Puttonen, E.; Hosseinzadeh, R., The efficiency of TOF technology in smartphones to estimate the diameter of some Hyrcanian forest index trees. Journal of Geomatics Science and Technology 2022, 11 (4), 131-140. (in persian)
Fleck, S.; Mölder, I.; Jacob, M.; Gebauer, T.; Jungkunst, H. F.; Leuschner, C., Comparison of conventional eight-point crown projections with LIDAR-based virtual crown projections in a temperate old-growth forest. Annals of forest science 2011, 68 (7), 1173-1185.
Gimenez, J.; Sansoni, S.; Tosetti, S.; Capraro, F.; Carelli, R., Trunk detection in tree crops using RGB-D images for structure-based ICM-SLAM. Computers and Electronics in Agriculture 2022, 199, 107099.
Hansard, M.; Lee, S.; Choi, O.; Horaud, R. P., Time-of-flight cameras: principles, methods and applications. Springer Science & Business Media: 2012.
Harikumar, A.; Liang, X.; Bovolo, F.; Bruzzone, L., Void-Volume-Based Stem Geometric Modeling and Branch-Knot Localization in Terrestrial Laser Scanning Data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 2022, 15, 3024-3040.
Hunčaga, M.; Chudá, J.; Tomaštík, J.; Slámová, M.; Koreň, M.; Chudý, F., The comparison of stem curve accuracy determined from point clouds acquired by different terrestrial remote sensing methods. Remote Sensing 2020, 12 (17), 2739.
Janhäll, S., Review on urban vegetation and particle air pollution–Deposition and dispersion. Atmospheric environment 2015, 105, 130-137.
Kükenbrink, D.; Gardi, O.; Morsdorf, F.; Thürig, E.; Schellenberger, A.; Mathys, L., Above-ground biomass references for urban trees from terrestrial laser scanning data. Annals of Botany 2021, 128 (6), 709-724.
Liang, X.; Kankare, V.; Hyyppä, J.; Wang, Y.; Kukko, A.; Haggrén, H.; Yu, X.; Kaartinen, H.; Jaakkola, A.; Guan, F., Terrestrial laser scanning in forest inventories. ISPRS Journal of Photogrammetry and Remote Sensing 2016, 115, 63-77.
McGlade, J.; Wallace, L.; Reinke, K.; Jones, S., The potential of low-cost 3D imaging technologies for forestry applications: Setting a research agenda for low-cost remote sensing inventory tasks. Forests 2022, 13 (2), 204.
Mokroš, M.; Výbošťok, J.; Grznárová, A.; Bošela, M.; Šebeň, V.; Merganič, J., Non-destructive monitoring of annual trunk increments by terrestrial structure from motion photogrammetry. PLoS One 2020, 15 (3), e0230082.
Murphy, M. Historic building information modelling (HBIM): For recording and documenting classical architecture in Dublin 1700 to 1830. Trinity College Dublin, 2012.
Neuville, R.; Bates, J. S.; Jonard, F., Estimating forest structure from UAV-mounted LiDAR point cloud using machine learning. Remote sensing 2021, 13 (3), 352.
Del Perugia, B.; Giannetti, F.; Chirici, G.; Travaglini, D., Influence of scan density on the estimation of single-tree attributes by hand-held mobile laser scanning. Forests 2019, 10 (3), 277.
de Paula Pires, R.; Olofsson, K.; Persson, H. J.; Lindberg, E.; Holmgren, J., Individual tree detection and estimation of stem attributes with mobile laser scanning along boreal forest roads. ISPRS Journal of Photogrammetry and Remote Sensing 2022, 187, 211-224.
Riegl. Long Range & High Accuracy 3D Terrestrial Laser Scanner: LMS-Z420i Data Sheet. 2010; 4p.
Schmohl, S.; Narváez Vallejo, A.; Soergel, U., Individual tree detection in urban ALS point clouds with 3D convolutional networks. Remote Sensing 2022, 14 (6), 1317.
Wang, X.; Singh, A.; Pervysheva, Y.; Lamatungga, K.; Murtinová, V.; Mukarram, M.; Zhu, Q.; Song, K.; Surový, P.; Mokroš, M., Evaluation of ipad pro 2020 lidar for estimating tree diameters in urban forest. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences 2021, 8, 105-110.
Witzmann, S.; Matitz, L.; Gollob, C.; Ritter, T.; Kraßnitzer, R.; Tockner, A.; Stampfer, K.; Nothdurft, A., Accuracy and precision of stem cross-section modeling in 3D point clouds from TLS and caliper measurements for basal area estimation. Remote Sensing 2022, 14 (8), 1923.